This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| Assertion | ltexprlem5 | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → 𝐶 ∈ P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| 2 | 1 | ltexprlem1 | ⊢ ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅ ) ) |
| 3 | 0pss | ⊢ ( ∅ ⊊ 𝐶 ↔ 𝐶 ≠ ∅ ) | |
| 4 | 2 3 | imbitrrdi | ⊢ ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → ∅ ⊊ 𝐶 ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → ∅ ⊊ 𝐶 ) |
| 6 | 1 | ltexprlem2 | ⊢ ( 𝐵 ∈ P → 𝐶 ⊊ Q ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → 𝐶 ⊊ Q ) |
| 8 | 1 | ltexprlem3 | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ) ) |
| 9 | 1 | ltexprlem4 | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 10 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ) | |
| 11 | 9 10 | imbitrrdi | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∃ 𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ) ) |
| 12 | 8 11 | jcad | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ) ) ) |
| 13 | 12 | ralrimiv | ⊢ ( 𝐵 ∈ P → ∀ 𝑥 ∈ 𝐶 ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → ∀ 𝑥 ∈ 𝐶 ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ) ) |
| 15 | elnp | ⊢ ( 𝐶 ∈ P ↔ ( ( ∅ ⊊ 𝐶 ∧ 𝐶 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐶 ( ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐶 𝑥 <Q 𝑧 ) ) ) | |
| 16 | 5 7 14 15 | syl21anbrc | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → 𝐶 ∈ P ) |