This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| Assertion | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 𝐺 𝐷 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | eqid | ⊢ ( 𝐶 𝐺 𝐷 ) = ( 𝐶 𝐺 𝐷 ) | |
| 4 | rspceov | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ ( 𝐶 𝐺 𝐷 ) = ( 𝐶 𝐺 𝐷 ) ) → ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 ( 𝐶 𝐺 𝐷 ) = ( 𝑔 𝐺 ℎ ) ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 ( 𝐶 𝐺 𝐷 ) = ( 𝑔 𝐺 ℎ ) ) |
| 6 | 1 2 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐶 𝐺 𝐷 ) ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 ( 𝐶 𝐺 𝐷 ) = ( 𝑔 𝐺 ℎ ) ) ) |
| 7 | 5 6 | imbitrrid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 𝐺 𝐷 ) ∈ ( 𝐴 𝐹 𝐵 ) ) ) |