This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnmadd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝐵 <Q 𝑦 ) | |
| 2 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 3 | 2 | brel | ⊢ ( 𝐵 <Q 𝑦 → ( 𝐵 ∈ Q ∧ 𝑦 ∈ Q ) ) |
| 4 | 3 | simprd | ⊢ ( 𝐵 <Q 𝑦 → 𝑦 ∈ Q ) |
| 5 | ltexnq | ⊢ ( 𝑦 ∈ Q → ( 𝐵 <Q 𝑦 ↔ ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) ) | |
| 6 | 5 | biimpcd | ⊢ ( 𝐵 <Q 𝑦 → ( 𝑦 ∈ Q → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) ) |
| 7 | 4 6 | mpd | ⊢ ( 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) |
| 8 | eleq1a | ⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝐵 +Q 𝑥 ) = 𝑦 → ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) ) | |
| 9 | 8 | eximdv | ⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) ) |
| 10 | 7 9 | syl5 | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) ) |
| 11 | 10 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) |
| 12 | 1 11 | syl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) |