This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 13-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexpri | ⊢ ( 𝐴 <P 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 2 | 1 | brel | ⊢ ( 𝐴 <P 𝐵 → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) |
| 3 | ltprord | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) | |
| 4 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑤 +Q 𝑦 ) = ( 𝑤 +Q 𝑧 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ↔ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 6 | 5 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) ↔ ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 7 | 6 | exbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) ↔ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 8 | 7 | cbvabv | ⊢ { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑧 ) ∈ 𝐵 ) } |
| 9 | 8 | ltexprlem5 | ⊢ ( ( 𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵 ) → { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P ) |
| 11 | 8 | ltexprlem6 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) ⊆ 𝐵 ) |
| 12 | 8 | ltexprlem7 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → 𝐵 ⊆ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) ) |
| 13 | 11 12 | eqssd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) |
| 14 | oveq2 | ⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } → ( 𝐴 +P 𝑥 ) = ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑥 = { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } → ( ( 𝐴 +P 𝑥 ) = 𝐵 ↔ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) ) |
| 16 | 15 | rspcev | ⊢ ( ( { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ∈ P ∧ ( 𝐴 +P { 𝑦 ∣ ∃ 𝑤 ( ¬ 𝑤 ∈ 𝐴 ∧ ( 𝑤 +Q 𝑦 ) ∈ 𝐵 ) } ) = 𝐵 ) → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |
| 17 | 10 13 16 | syl2anc | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |
| 18 | 17 | ex | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) ) |
| 19 | 3 18 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) ) |
| 20 | 2 19 | mpcom | ⊢ ( 𝐴 <P 𝐵 → ∃ 𝑥 ∈ P ( 𝐴 +P 𝑥 ) = 𝐵 ) |