This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prub | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 ∈ Q ) → ( ¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 2 | 1 | biimpcd | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐵 = 𝐶 → 𝐶 ∈ 𝐴 ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 = 𝐶 → 𝐶 ∈ 𝐴 ) ) |
| 4 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ( 𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴 ) ) | |
| 5 | 3 4 | jaod | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) |
| 6 | 5 | con3d | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ( ¬ 𝐶 ∈ 𝐴 → ¬ ( 𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 ∈ Q ) → ( ¬ 𝐶 ∈ 𝐴 → ¬ ( 𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵 ) ) ) |
| 8 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ Q ) | |
| 9 | ltsonq | ⊢ <Q Or Q | |
| 10 | sotric | ⊢ ( ( <Q Or Q ∧ ( 𝐵 ∈ Q ∧ 𝐶 ∈ Q ) ) → ( 𝐵 <Q 𝐶 ↔ ¬ ( 𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵 ) ) ) | |
| 11 | 9 10 | mpan | ⊢ ( ( 𝐵 ∈ Q ∧ 𝐶 ∈ Q ) → ( 𝐵 <Q 𝐶 ↔ ¬ ( 𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵 ) ) ) |
| 12 | 8 11 | sylan | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 ∈ Q ) → ( 𝐵 <Q 𝐶 ↔ ¬ ( 𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵 ) ) ) |
| 13 | 7 12 | sylibrd | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 ∈ Q ) → ( ¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶 ) ) |