This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point is a limit of F on the finite union U_ x e. A B ( x ) iff it is the limit of the restriction of F to each B ( x ) . (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limciun.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| limciun.2 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) | ||
| limciun.3 | ⊢ ( 𝜑 → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ℂ ) | ||
| limciun.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | limciun | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) = ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limciun.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | limciun.2 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) | |
| 3 | limciun.3 | ⊢ ( 𝜑 → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ℂ ) | |
| 4 | limciun.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 5 | limccl | ⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ℂ | |
| 6 | limcresi | ⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) | |
| 7 | 6 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) |
| 8 | ssiin | ⊢ ( ( 𝐹 limℂ 𝐶 ) ⊆ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) | |
| 9 | 7 8 | mpbir | ⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) |
| 10 | 5 9 | ssini | ⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) ⊆ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
| 12 | elriin | ⊢ ( 𝑦 ∈ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) | |
| 13 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝑦 ∈ ℂ ) | |
| 14 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → 𝐴 ∈ Fin ) |
| 15 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) | |
| 16 | nfcv | ⊢ Ⅎ 𝑥 𝐹 | |
| 17 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 | |
| 18 | 16 17 | nfres | ⊢ Ⅎ 𝑥 ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
| 19 | nfcv | ⊢ Ⅎ 𝑥 limℂ | |
| 20 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 21 | 18 19 20 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) |
| 22 | 21 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) |
| 23 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) | |
| 24 | 23 | reseq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
| 25 | 24 | oveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) |
| 26 | 25 | eleq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ↔ 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) ) |
| 27 | 22 26 | rspc | ⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) → 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) ) |
| 28 | 15 27 | mpan9 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) |
| 29 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ℂ ) |
| 30 | ssiun2 | ⊢ ( 𝑎 ∈ 𝐴 → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ∪ 𝑎 ∈ 𝐴 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) | |
| 31 | nfcv | ⊢ Ⅎ 𝑎 𝐵 | |
| 32 | 31 17 23 | cbviun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑎 ∈ 𝐴 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
| 33 | 30 32 | sseqtrrdi | ⊢ ( 𝑎 ∈ 𝐴 → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 35 | 29 34 | fssresd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) : ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⟶ ℂ ) |
| 36 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) | |
| 37 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
| 38 | nfcv | ⊢ Ⅎ 𝑥 ℂ | |
| 39 | 17 38 | nfss | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ |
| 40 | 23 | sseq1d | ⊢ ( 𝑥 = 𝑎 → ( 𝐵 ⊆ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ ) ) |
| 41 | 39 40 | rspc | ⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ ) ) |
| 42 | 36 37 41 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ ) |
| 43 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 44 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 45 | 35 42 43 44 | ellimc2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 46 | 45 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 47 | 28 46 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 48 | 47 | simprd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 49 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) | |
| 50 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑦 ∈ 𝑢 ) | |
| 51 | rsp | ⊢ ( ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) → ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) | |
| 52 | 48 49 50 51 | syl3c | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 53 | 52 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∀ 𝑎 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 54 | nfv | ⊢ Ⅎ 𝑎 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) | |
| 55 | nfcv | ⊢ Ⅎ 𝑥 ( TopOpen ‘ ℂfld ) | |
| 56 | nfv | ⊢ Ⅎ 𝑥 𝐶 ∈ 𝑘 | |
| 57 | nfcv | ⊢ Ⅎ 𝑥 𝑘 | |
| 58 | nfcv | ⊢ Ⅎ 𝑥 { 𝐶 } | |
| 59 | 17 58 | nfdif | ⊢ Ⅎ 𝑥 ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) |
| 60 | 57 59 | nfin | ⊢ Ⅎ 𝑥 ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) |
| 61 | 18 60 | nfima | ⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) |
| 62 | nfcv | ⊢ Ⅎ 𝑥 𝑢 | |
| 63 | 61 62 | nfss | ⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 |
| 64 | 56 63 | nfan | ⊢ Ⅎ 𝑥 ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
| 65 | 55 64 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
| 66 | 23 | difeq1d | ⊢ ( 𝑥 = 𝑎 → ( 𝐵 ∖ { 𝐶 } ) = ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) |
| 67 | 66 | ineq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) |
| 68 | 24 67 | imaeq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ) |
| 69 | 68 | sseq1d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 70 | 69 | anbi2d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 71 | 70 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 72 | 54 65 71 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ∀ 𝑎 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 73 | 53 72 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 74 | eleq2 | ⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( 𝐶 ∈ 𝑘 ↔ 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 75 | ineq1 | ⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) | |
| 76 | 75 | imaeq2d | ⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ) |
| 77 | 76 | sseq1d | ⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 78 | 74 77 | anbi12d | ⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 79 | 78 | ac6sfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 80 | 14 73 79 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 81 | 44 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 82 | frn | ⊢ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) ) | |
| 83 | 82 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) ) |
| 84 | 14 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐴 ∈ Fin ) |
| 85 | ffn | ⊢ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → 𝑔 Fn 𝐴 ) | |
| 86 | 85 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝑔 Fn 𝐴 ) |
| 87 | dffn4 | ⊢ ( 𝑔 Fn 𝐴 ↔ 𝑔 : 𝐴 –onto→ ran 𝑔 ) | |
| 88 | 86 87 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝑔 : 𝐴 –onto→ ran 𝑔 ) |
| 89 | fofi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐴 –onto→ ran 𝑔 ) → ran 𝑔 ∈ Fin ) | |
| 90 | 84 88 89 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ran 𝑔 ∈ Fin ) |
| 91 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 92 | 91 | rintopn | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) ∧ ran 𝑔 ∈ Fin ) → ( ℂ ∩ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 93 | 81 83 90 92 | mp3an2i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( ℂ ∩ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 94 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝐶 ∈ ℂ ) |
| 95 | 94 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐶 ∈ ℂ ) |
| 96 | simpl | ⊢ ( ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) | |
| 97 | 96 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) |
| 98 | 97 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) |
| 99 | eleq2 | ⊢ ( 𝑧 = ( 𝑔 ‘ 𝑥 ) → ( 𝐶 ∈ 𝑧 ↔ 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 100 | 99 | ralrn | ⊢ ( 𝑔 Fn 𝐴 → ( ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
| 101 | 86 100 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
| 102 | 98 101 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ) |
| 103 | elrint | ⊢ ( 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ) ) | |
| 104 | 95 102 103 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ) |
| 105 | indifcom | ⊢ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) | |
| 106 | iunin1 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) | |
| 107 | 105 106 | eqtr4i | ⊢ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) |
| 108 | 107 | imaeq2i | ⊢ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) |
| 109 | imaiun | ⊢ ( 𝐹 “ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) | |
| 110 | 108 109 | eqtri | ⊢ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) |
| 111 | inss2 | ⊢ ( ℂ ∩ ∩ ran 𝑔 ) ⊆ ∩ ran 𝑔 | |
| 112 | fnfvelrn | ⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) | |
| 113 | 85 112 | sylan | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) |
| 114 | intss1 | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑥 ) ) | |
| 115 | 113 114 | syl | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑥 ) ) |
| 116 | 111 115 | sstrid | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ℂ ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑥 ) ) |
| 117 | 116 | ssdifd | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ⊆ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) |
| 118 | sslin | ⊢ ( ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ⊆ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) → ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ⊆ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) | |
| 119 | imass2 | ⊢ ( ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ⊆ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) ) | |
| 120 | 117 118 119 | 3syl | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) ) |
| 121 | indifcom | ⊢ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) | |
| 122 | 121 | imaeq2i | ⊢ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹 ↾ 𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) |
| 123 | inss1 | ⊢ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ⊆ 𝐵 | |
| 124 | resima2 | ⊢ ( ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) ) | |
| 125 | 123 124 | ax-mp | ⊢ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) |
| 126 | 122 125 | eqtri | ⊢ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) |
| 127 | 120 126 | sseqtrrdi | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ) |
| 128 | sstr2 | ⊢ ( ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) → ( ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) | |
| 129 | 127 128 | syl | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 130 | 129 | adantld | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 131 | 130 | ralimdva | ⊢ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 132 | 131 | imp | ⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
| 133 | 132 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
| 134 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) | |
| 135 | 133 134 | sylibr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
| 136 | 110 135 | eqsstrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
| 137 | eleq2 | ⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( 𝐶 ∈ 𝑣 ↔ 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ) ) | |
| 138 | ineq1 | ⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) = ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) | |
| 139 | 138 | imaeq2d | ⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ) |
| 140 | 139 | sseq1d | ⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 141 | 137 140 | anbi12d | ⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ∧ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 142 | 141 | rspcev | ⊢ ( ( ( ℂ ∩ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ∧ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 143 | 93 104 136 142 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 144 | 80 143 | exlimddv | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
| 145 | 144 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝑦 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 146 | 145 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
| 147 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ℂ ) |
| 148 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) | |
| 149 | 2 148 | sylibr | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
| 150 | 149 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
| 151 | 147 150 94 44 | ellimc2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → ( 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 152 | 13 146 151 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ) |
| 153 | 152 | ex | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ) ) |
| 154 | 12 153 | biimtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ) ) |
| 155 | 154 | ssrdv | ⊢ ( 𝜑 → ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ⊆ ( 𝐹 limℂ 𝐶 ) ) |
| 156 | 11 155 | eqssd | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) = ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |