This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point is a limit of F on A u. B iff it is the limit of the restriction of F to A and to B . (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcun.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| limcun.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) | ||
| limcun.3 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 ∪ 𝐵 ) ⟶ ℂ ) | ||
| Assertion | limcun | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) = ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcun.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 2 | limcun.2 | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) | |
| 3 | limcun.3 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 ∪ 𝐵 ) ⟶ ℂ ) | |
| 4 | limcrcl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) | |
| 5 | 4 | simp3d | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) → 𝐶 ∈ ℂ ) ) |
| 7 | elinel1 | ⊢ ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ) | |
| 8 | limcrcl | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) | |
| 9 | 8 | simp3d | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 10 | 7 9 | syl | ⊢ ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝐶 ∈ ℂ ) |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝐶 ∈ ℂ ) ) |
| 12 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 13 | 12 | a1i | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐴 ⊆ ℂ ) |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ⊆ ℂ ) |
| 16 | cnex | ⊢ ℂ ∈ V | |
| 17 | 16 | ssex | ⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
| 18 | 14 17 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ V ) |
| 19 | 16 | ssex | ⊢ ( 𝐵 ⊆ ℂ → 𝐵 ∈ V ) |
| 20 | 15 19 | syl | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ V ) |
| 21 | sseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ ) ) | |
| 22 | sseq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ ) ) | |
| 23 | 21 22 | ralprg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⊆ ℂ ↔ ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ) ) |
| 24 | 18 20 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⊆ ℂ ↔ ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ) ) |
| 25 | 14 15 24 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⊆ ℂ ) |
| 26 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐹 : ( 𝐴 ∪ 𝐵 ) ⟶ ℂ ) |
| 27 | uniiun | ⊢ ∪ { 𝐴 , 𝐵 } = ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 | |
| 28 | uniprg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) | |
| 29 | 18 20 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 30 | 27 29 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 = ( 𝐴 ∪ 𝐵 ) ) |
| 31 | 30 | feq2d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐹 : ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⟶ ℂ ↔ 𝐹 : ( 𝐴 ∪ 𝐵 ) ⟶ ℂ ) ) |
| 32 | 26 31 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐹 : ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⟶ ℂ ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 34 | 13 25 32 33 | limciun | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐹 limℂ 𝐶 ) = ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ) |
| 35 | 34 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ) ) |
| 36 | reseq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝐴 ) ) | |
| 37 | 36 | oveq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) = ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ) |
| 38 | 37 | eleq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ) ) |
| 39 | reseq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝐵 ) ) | |
| 40 | 39 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) = ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) |
| 41 | 40 | eleq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
| 42 | 38 41 | ralprg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 43 | 18 20 42 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 44 | 43 | anbi2d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) ) |
| 45 | limccl | ⊢ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ⊆ ℂ | |
| 46 | 45 | sseli | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) → 𝑥 ∈ ℂ ) |
| 47 | 46 | adantr | ⊢ ( ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑥 ∈ ℂ ) |
| 48 | 47 | pm4.71ri | ⊢ ( ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 49 | 44 48 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 50 | elriin | ⊢ ( 𝑥 ∈ ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ) | |
| 51 | elin | ⊢ ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) | |
| 52 | 49 50 51 | 3bitr4g | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑥 ∈ ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 53 | 35 52 | bitrd | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 54 | 53 | ex | ⊢ ( 𝜑 → ( 𝐶 ∈ ℂ → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) ) |
| 55 | 6 11 54 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 56 | 55 | eqrdv | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) = ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |