This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point is a limit of F on the finite union U_ x e. A B ( x ) iff it is the limit of the restriction of F to each B ( x ) . (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limciun.1 | |- ( ph -> A e. Fin ) |
|
| limciun.2 | |- ( ph -> A. x e. A B C_ CC ) |
||
| limciun.3 | |- ( ph -> F : U_ x e. A B --> CC ) |
||
| limciun.4 | |- ( ph -> C e. CC ) |
||
| Assertion | limciun | |- ( ph -> ( F limCC C ) = ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limciun.1 | |- ( ph -> A e. Fin ) |
|
| 2 | limciun.2 | |- ( ph -> A. x e. A B C_ CC ) |
|
| 3 | limciun.3 | |- ( ph -> F : U_ x e. A B --> CC ) |
|
| 4 | limciun.4 | |- ( ph -> C e. CC ) |
|
| 5 | limccl | |- ( F limCC C ) C_ CC |
|
| 6 | limcresi | |- ( F limCC C ) C_ ( ( F |` B ) limCC C ) |
|
| 7 | 6 | rgenw | |- A. x e. A ( F limCC C ) C_ ( ( F |` B ) limCC C ) |
| 8 | ssiin | |- ( ( F limCC C ) C_ |^|_ x e. A ( ( F |` B ) limCC C ) <-> A. x e. A ( F limCC C ) C_ ( ( F |` B ) limCC C ) ) |
|
| 9 | 7 8 | mpbir | |- ( F limCC C ) C_ |^|_ x e. A ( ( F |` B ) limCC C ) |
| 10 | 5 9 | ssini | |- ( F limCC C ) C_ ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) |
| 11 | 10 | a1i | |- ( ph -> ( F limCC C ) C_ ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) ) |
| 12 | elriin | |- ( y e. ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) <-> ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) |
|
| 13 | simprl | |- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> y e. CC ) |
|
| 14 | 1 | ad2antrr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A e. Fin ) |
| 15 | simplrr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. x e. A y e. ( ( F |` B ) limCC C ) ) |
|
| 16 | nfcv | |- F/_ x F |
|
| 17 | nfcsb1v | |- F/_ x [_ a / x ]_ B |
|
| 18 | 16 17 | nfres | |- F/_ x ( F |` [_ a / x ]_ B ) |
| 19 | nfcv | |- F/_ x limCC |
|
| 20 | nfcv | |- F/_ x C |
|
| 21 | 18 19 20 | nfov | |- F/_ x ( ( F |` [_ a / x ]_ B ) limCC C ) |
| 22 | 21 | nfcri | |- F/ x y e. ( ( F |` [_ a / x ]_ B ) limCC C ) |
| 23 | csbeq1a | |- ( x = a -> B = [_ a / x ]_ B ) |
|
| 24 | 23 | reseq2d | |- ( x = a -> ( F |` B ) = ( F |` [_ a / x ]_ B ) ) |
| 25 | 24 | oveq1d | |- ( x = a -> ( ( F |` B ) limCC C ) = ( ( F |` [_ a / x ]_ B ) limCC C ) ) |
| 26 | 25 | eleq2d | |- ( x = a -> ( y e. ( ( F |` B ) limCC C ) <-> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) ) |
| 27 | 22 26 | rspc | |- ( a e. A -> ( A. x e. A y e. ( ( F |` B ) limCC C ) -> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) ) |
| 28 | 15 27 | mpan9 | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) |
| 29 | 3 | ad2antrr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> F : U_ x e. A B --> CC ) |
| 30 | ssiun2 | |- ( a e. A -> [_ a / x ]_ B C_ U_ a e. A [_ a / x ]_ B ) |
|
| 31 | nfcv | |- F/_ a B |
|
| 32 | 31 17 23 | cbviun | |- U_ x e. A B = U_ a e. A [_ a / x ]_ B |
| 33 | 30 32 | sseqtrrdi | |- ( a e. A -> [_ a / x ]_ B C_ U_ x e. A B ) |
| 34 | 33 | adantl | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> [_ a / x ]_ B C_ U_ x e. A B ) |
| 35 | 29 34 | fssresd | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> ( F |` [_ a / x ]_ B ) : [_ a / x ]_ B --> CC ) |
| 36 | simpr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> a e. A ) |
|
| 37 | 2 | ad2antrr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> A. x e. A B C_ CC ) |
| 38 | nfcv | |- F/_ x CC |
|
| 39 | 17 38 | nfss | |- F/ x [_ a / x ]_ B C_ CC |
| 40 | 23 | sseq1d | |- ( x = a -> ( B C_ CC <-> [_ a / x ]_ B C_ CC ) ) |
| 41 | 39 40 | rspc | |- ( a e. A -> ( A. x e. A B C_ CC -> [_ a / x ]_ B C_ CC ) ) |
| 42 | 36 37 41 | sylc | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> [_ a / x ]_ B C_ CC ) |
| 43 | 4 | ad2antrr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> C e. CC ) |
| 44 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 45 | 35 42 43 44 | ellimc2 | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> ( y e. ( ( F |` [_ a / x ]_ B ) limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) ) |
| 46 | 45 | adantlr | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> ( y e. ( ( F |` [_ a / x ]_ B ) limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) ) |
| 47 | 28 46 | mpbid | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) |
| 48 | 47 | simprd | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) |
| 49 | simplrl | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> u e. ( TopOpen ` CCfld ) ) |
|
| 50 | simplrr | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> y e. u ) |
|
| 51 | rsp | |- ( A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) -> ( u e. ( TopOpen ` CCfld ) -> ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) |
|
| 52 | 48 49 50 51 | syl3c | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
| 53 | 52 | ralrimiva | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. a e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
| 54 | nfv | |- F/ a E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) |
|
| 55 | nfcv | |- F/_ x ( TopOpen ` CCfld ) |
|
| 56 | nfv | |- F/ x C e. k |
|
| 57 | nfcv | |- F/_ x k |
|
| 58 | nfcv | |- F/_ x { C } |
|
| 59 | 17 58 | nfdif | |- F/_ x ( [_ a / x ]_ B \ { C } ) |
| 60 | 57 59 | nfin | |- F/_ x ( k i^i ( [_ a / x ]_ B \ { C } ) ) |
| 61 | 18 60 | nfima | |- F/_ x ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) |
| 62 | nfcv | |- F/_ x u |
|
| 63 | 61 62 | nfss | |- F/ x ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u |
| 64 | 56 63 | nfan | |- F/ x ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) |
| 65 | 55 64 | nfrexw | |- F/ x E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) |
| 66 | 23 | difeq1d | |- ( x = a -> ( B \ { C } ) = ( [_ a / x ]_ B \ { C } ) ) |
| 67 | 66 | ineq2d | |- ( x = a -> ( k i^i ( B \ { C } ) ) = ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) |
| 68 | 24 67 | imaeq12d | |- ( x = a -> ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) = ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) ) |
| 69 | 68 | sseq1d | |- ( x = a -> ( ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u <-> ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
| 70 | 69 | anbi2d | |- ( x = a -> ( ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) |
| 71 | 70 | rexbidv | |- ( x = a -> ( E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) |
| 72 | 54 65 71 | cbvralw | |- ( A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> A. a e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
| 73 | 53 72 | sylibr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) ) |
| 74 | eleq2 | |- ( k = ( g ` x ) -> ( C e. k <-> C e. ( g ` x ) ) ) |
|
| 75 | ineq1 | |- ( k = ( g ` x ) -> ( k i^i ( B \ { C } ) ) = ( ( g ` x ) i^i ( B \ { C } ) ) ) |
|
| 76 | 75 | imaeq2d | |- ( k = ( g ` x ) -> ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) = ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) ) |
| 77 | 76 | sseq1d | |- ( k = ( g ` x ) -> ( ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u <-> ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) |
| 78 | 74 77 | anbi12d | |- ( k = ( g ` x ) -> ( ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) |
| 79 | 78 | ac6sfi | |- ( ( A e. Fin /\ A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) ) -> E. g ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) |
| 80 | 14 73 79 | syl2anc | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> E. g ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) |
| 81 | 44 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 82 | frn | |- ( g : A --> ( TopOpen ` CCfld ) -> ran g C_ ( TopOpen ` CCfld ) ) |
|
| 83 | 82 | ad2antrl | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ran g C_ ( TopOpen ` CCfld ) ) |
| 84 | 14 | adantr | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A e. Fin ) |
| 85 | ffn | |- ( g : A --> ( TopOpen ` CCfld ) -> g Fn A ) |
|
| 86 | 85 | ad2antrl | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> g Fn A ) |
| 87 | dffn4 | |- ( g Fn A <-> g : A -onto-> ran g ) |
|
| 88 | 86 87 | sylib | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> g : A -onto-> ran g ) |
| 89 | fofi | |- ( ( A e. Fin /\ g : A -onto-> ran g ) -> ran g e. Fin ) |
|
| 90 | 84 88 89 | syl2anc | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ran g e. Fin ) |
| 91 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 92 | 91 | rintopn | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ran g C_ ( TopOpen ` CCfld ) /\ ran g e. Fin ) -> ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) ) |
| 93 | 81 83 90 92 | mp3an2i | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) ) |
| 94 | 4 | adantr | |- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> C e. CC ) |
| 95 | 94 | ad2antrr | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> C e. CC ) |
| 96 | simpl | |- ( ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> C e. ( g ` x ) ) |
|
| 97 | 96 | ralimi | |- ( A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> A. x e. A C e. ( g ` x ) ) |
| 98 | 97 | ad2antll | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. x e. A C e. ( g ` x ) ) |
| 99 | eleq2 | |- ( z = ( g ` x ) -> ( C e. z <-> C e. ( g ` x ) ) ) |
|
| 100 | 99 | ralrn | |- ( g Fn A -> ( A. z e. ran g C e. z <-> A. x e. A C e. ( g ` x ) ) ) |
| 101 | 86 100 | syl | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( A. z e. ran g C e. z <-> A. x e. A C e. ( g ` x ) ) ) |
| 102 | 98 101 | mpbird | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. z e. ran g C e. z ) |
| 103 | elrint | |- ( C e. ( CC i^i |^| ran g ) <-> ( C e. CC /\ A. z e. ran g C e. z ) ) |
|
| 104 | 95 102 103 | sylanbrc | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> C e. ( CC i^i |^| ran g ) ) |
| 105 | indifcom | |- ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) = ( U_ x e. A B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) |
|
| 106 | iunin1 | |- U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) = ( U_ x e. A B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) |
|
| 107 | 105 106 | eqtr4i | |- ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) = U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) |
| 108 | 107 | imaeq2i | |- ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) = ( F " U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) |
| 109 | imaiun | |- ( F " U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) = U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) |
|
| 110 | 108 109 | eqtri | |- ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) = U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) |
| 111 | inss2 | |- ( CC i^i |^| ran g ) C_ |^| ran g |
|
| 112 | fnfvelrn | |- ( ( g Fn A /\ x e. A ) -> ( g ` x ) e. ran g ) |
|
| 113 | 85 112 | sylan | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( g ` x ) e. ran g ) |
| 114 | intss1 | |- ( ( g ` x ) e. ran g -> |^| ran g C_ ( g ` x ) ) |
|
| 115 | 113 114 | syl | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> |^| ran g C_ ( g ` x ) ) |
| 116 | 111 115 | sstrid | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( CC i^i |^| ran g ) C_ ( g ` x ) ) |
| 117 | 116 | ssdifd | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( CC i^i |^| ran g ) \ { C } ) C_ ( ( g ` x ) \ { C } ) ) |
| 118 | sslin | |- ( ( ( CC i^i |^| ran g ) \ { C } ) C_ ( ( g ` x ) \ { C } ) -> ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) C_ ( B i^i ( ( g ` x ) \ { C } ) ) ) |
|
| 119 | imass2 | |- ( ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) C_ ( B i^i ( ( g ` x ) \ { C } ) ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) |
|
| 120 | 117 118 119 | 3syl | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) |
| 121 | indifcom | |- ( ( g ` x ) i^i ( B \ { C } ) ) = ( B i^i ( ( g ` x ) \ { C } ) ) |
|
| 122 | 121 | imaeq2i | |- ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) = ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) |
| 123 | inss1 | |- ( B i^i ( ( g ` x ) \ { C } ) ) C_ B |
|
| 124 | resima2 | |- ( ( B i^i ( ( g ` x ) \ { C } ) ) C_ B -> ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) |
|
| 125 | 123 124 | ax-mp | |- ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) |
| 126 | 122 125 | eqtri | |- ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) |
| 127 | 120 126 | sseqtrrdi | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) ) |
| 128 | sstr2 | |- ( ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) -> ( ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
|
| 129 | 127 128 | syl | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
| 130 | 129 | adantld | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
| 131 | 130 | ralimdva | |- ( g : A --> ( TopOpen ` CCfld ) -> ( A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
| 132 | 131 | imp | |- ( ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
| 133 | 132 | adantl | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
| 134 | iunss | |- ( U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u <-> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
|
| 135 | 133 134 | sylibr | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
| 136 | 110 135 | eqsstrid | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) |
| 137 | eleq2 | |- ( v = ( CC i^i |^| ran g ) -> ( C e. v <-> C e. ( CC i^i |^| ran g ) ) ) |
|
| 138 | ineq1 | |- ( v = ( CC i^i |^| ran g ) -> ( v i^i ( U_ x e. A B \ { C } ) ) = ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) |
|
| 139 | 138 | imaeq2d | |- ( v = ( CC i^i |^| ran g ) -> ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) = ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) ) |
| 140 | 139 | sseq1d | |- ( v = ( CC i^i |^| ran g ) -> ( ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u <-> ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
| 141 | 137 140 | anbi12d | |- ( v = ( CC i^i |^| ran g ) -> ( ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) <-> ( C e. ( CC i^i |^| ran g ) /\ ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) |
| 142 | 141 | rspcev | |- ( ( ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) /\ ( C e. ( CC i^i |^| ran g ) /\ ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
| 143 | 93 104 136 142 | syl12anc | |- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
| 144 | 80 143 | exlimddv | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
| 145 | 144 | expr | |- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ u e. ( TopOpen ` CCfld ) ) -> ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) |
| 146 | 145 | ralrimiva | |- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) |
| 147 | 3 | adantr | |- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> F : U_ x e. A B --> CC ) |
| 148 | iunss | |- ( U_ x e. A B C_ CC <-> A. x e. A B C_ CC ) |
|
| 149 | 2 148 | sylibr | |- ( ph -> U_ x e. A B C_ CC ) |
| 150 | 149 | adantr | |- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> U_ x e. A B C_ CC ) |
| 151 | 147 150 94 44 | ellimc2 | |- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> ( y e. ( F limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) ) ) |
| 152 | 13 146 151 | mpbir2and | |- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> y e. ( F limCC C ) ) |
| 153 | 152 | ex | |- ( ph -> ( ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) -> y e. ( F limCC C ) ) ) |
| 154 | 12 153 | biimtrid | |- ( ph -> ( y e. ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) -> y e. ( F limCC C ) ) ) |
| 155 | 154 | ssrdv | |- ( ph -> ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) C_ ( F limCC C ) ) |
| 156 | 11 155 | eqssd | |- ( ph -> ( F limCC C ) = ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) ) |