This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn , this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmftp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | eltpg | ⊢ ( 0 ∈ ℤ → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) |
| 4 | 3 | biimpri | ⊢ ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 5 | tpssi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ) | |
| 6 | 4 5 | anim12ci | ⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 7 | lcmf0val | ⊢ ( ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 0 ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 0 ) |
| 9 | 0zd | ⊢ ( 𝐶 ∈ ℤ → 0 ∈ ℤ ) | |
| 10 | lcmcom | ⊢ ( ( 0 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 lcm 𝐶 ) = ( 𝐶 lcm 0 ) ) | |
| 11 | 9 10 | mpancom | ⊢ ( 𝐶 ∈ ℤ → ( 0 lcm 𝐶 ) = ( 𝐶 lcm 0 ) ) |
| 12 | lcm0val | ⊢ ( 𝐶 ∈ ℤ → ( 𝐶 lcm 0 ) = 0 ) | |
| 13 | 11 12 | eqtrd | ⊢ ( 𝐶 ∈ ℤ → ( 0 lcm 𝐶 ) = 0 ) |
| 14 | 13 | eqcomd | ⊢ ( 𝐶 ∈ ℤ → 0 = ( 0 lcm 𝐶 ) ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 0 lcm 𝐶 ) ) |
| 16 | 15 | adantl | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 0 lcm 𝐶 ) ) |
| 17 | 0zd | ⊢ ( 𝐵 ∈ ℤ → 0 ∈ ℤ ) | |
| 18 | lcmcom | ⊢ ( ( 0 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 lcm 𝐵 ) = ( 𝐵 lcm 0 ) ) | |
| 19 | 17 18 | mpancom | ⊢ ( 𝐵 ∈ ℤ → ( 0 lcm 𝐵 ) = ( 𝐵 lcm 0 ) ) |
| 20 | lcm0val | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 lcm 0 ) = 0 ) | |
| 21 | 19 20 | eqtrd | ⊢ ( 𝐵 ∈ ℤ → ( 0 lcm 𝐵 ) = 0 ) |
| 22 | 21 | eqcomd | ⊢ ( 𝐵 ∈ ℤ → 0 = ( 0 lcm 𝐵 ) ) |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 0 lcm 𝐵 ) ) |
| 24 | 23 | adantl | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 0 lcm 𝐵 ) ) |
| 25 | 24 | oveq1d | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = ( ( 0 lcm 𝐵 ) lcm 𝐶 ) ) |
| 26 | oveq1 | ⊢ ( 0 = 𝐴 → ( 0 lcm 𝐵 ) = ( 𝐴 lcm 𝐵 ) ) | |
| 27 | 26 | oveq1d | ⊢ ( 0 = 𝐴 → ( ( 0 lcm 𝐵 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 0 lcm 𝐵 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 29 | 16 25 28 | 3eqtrd | ⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 30 | lcm0val | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 lcm 0 ) = 0 ) | |
| 31 | 30 | eqcomd | ⊢ ( 𝐴 ∈ ℤ → 0 = ( 𝐴 lcm 0 ) ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 𝐴 lcm 0 ) ) |
| 33 | 32 | adantl | ⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 𝐴 lcm 0 ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = ( ( 𝐴 lcm 0 ) lcm 𝐶 ) ) |
| 35 | 13 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 lcm 𝐶 ) = 0 ) |
| 36 | 35 | adantl | ⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = 0 ) |
| 37 | oveq2 | ⊢ ( 0 = 𝐵 → ( 𝐴 lcm 0 ) = ( 𝐴 lcm 𝐵 ) ) | |
| 38 | 37 | adantr | ⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 0 ) = ( 𝐴 lcm 𝐵 ) ) |
| 39 | 38 | oveq1d | ⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 0 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 40 | 34 36 39 | 3eqtr3d | ⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 41 | lcmcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ0 ) | |
| 42 | 41 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
| 43 | lcm0val | ⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℤ → ( ( 𝐴 lcm 𝐵 ) lcm 0 ) = 0 ) | |
| 44 | 43 | eqcomd | ⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℤ → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
| 45 | 42 44 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
| 46 | 45 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
| 47 | oveq2 | ⊢ ( 0 = 𝐶 → ( ( 𝐴 lcm 𝐵 ) lcm 0 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) | |
| 48 | 46 47 | sylan9eqr | ⊢ ( ( 0 = 𝐶 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 49 | 29 40 48 | 3jaoian | ⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 50 | 8 49 | eqtrd | ⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 51 | 42 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
| 52 | simp3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℤ ) | |
| 53 | 51 52 | jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 54 | 53 | adantl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 55 | dvdslcm | ⊢ ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 57 | dvdslcm | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) ) | |
| 58 | 57 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) ) |
| 59 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 60 | lcmcl | ⊢ ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ0 ) | |
| 61 | 53 60 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ0 ) |
| 62 | 61 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) |
| 63 | 59 51 62 | 3jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
| 64 | dvdstr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 66 | 65 | expd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 67 | 66 | com12 | ⊢ ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 69 | 58 68 | mpcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 70 | 69 | adantl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 71 | 70 | com12 | ⊢ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 72 | 71 | adantr | ⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 73 | 72 | impcom | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 74 | simpr | ⊢ ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) | |
| 75 | 57 74 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
| 76 | 75 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
| 77 | 76 | adantl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
| 78 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℤ ) | |
| 79 | 78 51 62 | 3jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
| 80 | 79 | adantl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
| 81 | dvdstr | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) → ( ( 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) | |
| 82 | 80 81 | syl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 83 | 77 82 | mpand | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 84 | 83 | com12 | ⊢ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 85 | 84 | adantr | ⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 86 | 85 | impcom | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 87 | simpr | ⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) | |
| 88 | 87 | adantl | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 89 | 73 86 88 | 3jca | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 90 | 56 89 | mpdan | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 91 | breq1 | ⊢ ( 𝑚 = 𝐴 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) | |
| 92 | breq1 | ⊢ ( 𝑚 = 𝐵 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) | |
| 93 | breq1 | ⊢ ( 𝑚 = 𝐶 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) | |
| 94 | 91 92 93 | raltpg | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 95 | 94 | adantl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 96 | 90 95 | mpbird | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 97 | breq1 | ⊢ ( 𝑚 = 𝐴 → ( 𝑚 ∥ 𝑘 ↔ 𝐴 ∥ 𝑘 ) ) | |
| 98 | breq1 | ⊢ ( 𝑚 = 𝐵 → ( 𝑚 ∥ 𝑘 ↔ 𝐵 ∥ 𝑘 ) ) | |
| 99 | breq1 | ⊢ ( 𝑚 = 𝐶 → ( 𝑚 ∥ 𝑘 ↔ 𝐶 ∥ 𝑘 ) ) | |
| 100 | 97 98 99 | raltpg | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 ↔ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) ) |
| 101 | 100 | ad2antlr | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 ↔ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) ) |
| 102 | simpr | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 103 | 51 | ad2antlr | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
| 104 | 52 | ad2antlr | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 105 | 102 103 104 | 3jca | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 106 | 105 | adantr | ⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 107 | 3ioran | ⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ↔ ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) ) | |
| 108 | eqcom | ⊢ ( 0 = 𝐴 ↔ 𝐴 = 0 ) | |
| 109 | 108 | notbii | ⊢ ( ¬ 0 = 𝐴 ↔ ¬ 𝐴 = 0 ) |
| 110 | eqcom | ⊢ ( 0 = 𝐵 ↔ 𝐵 = 0 ) | |
| 111 | 110 | notbii | ⊢ ( ¬ 0 = 𝐵 ↔ ¬ 𝐵 = 0 ) |
| 112 | 109 111 | anbi12i | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
| 113 | 112 | biimpi | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
| 114 | ioran | ⊢ ( ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) | |
| 115 | 113 114 | sylibr | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 116 | 115 | 3adant3 | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 117 | 107 116 | sylbi | ⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 118 | id | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) | |
| 119 | 118 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 120 | 117 119 | anim12ci | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 121 | lcmn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) | |
| 122 | 120 121 | syl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
| 123 | nnne0 | ⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℕ → ( 𝐴 lcm 𝐵 ) ≠ 0 ) | |
| 124 | 123 | neneqd | ⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℕ → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
| 125 | 122 124 | syl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
| 126 | eqcom | ⊢ ( 0 = 𝐶 ↔ 𝐶 = 0 ) | |
| 127 | 126 | notbii | ⊢ ( ¬ 0 = 𝐶 ↔ ¬ 𝐶 = 0 ) |
| 128 | 127 | biimpi | ⊢ ( ¬ 0 = 𝐶 → ¬ 𝐶 = 0 ) |
| 129 | 128 | 3ad2ant3 | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ 𝐶 = 0 ) |
| 130 | 107 129 | sylbi | ⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ 𝐶 = 0 ) |
| 131 | 130 | adantr | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ 𝐶 = 0 ) |
| 132 | 125 131 | jca | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 133 | 132 | adantr | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 134 | 133 | adantr | ⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 135 | ioran | ⊢ ( ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ↔ ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) | |
| 136 | 134 135 | sylibr | ⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) |
| 137 | 119 | adantl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 138 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 139 | 137 138 | anim12ci | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
| 140 | 3anass | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( 𝑘 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) | |
| 141 | 139 140 | sylibr | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 142 | lcmdvds | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) | |
| 143 | 141 142 | syl | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
| 144 | 143 | com12 | ⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
| 145 | 144 | 3adant3 | ⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
| 146 | 145 | impcom | ⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) |
| 147 | simp3 | ⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → 𝐶 ∥ 𝑘 ) | |
| 148 | 147 | adantl | ⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → 𝐶 ∥ 𝑘 ) |
| 149 | lcmledvds | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) → ( ( ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) | |
| 150 | 149 | imp | ⊢ ( ( ( ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) |
| 151 | 106 136 146 148 150 | syl22anc | ⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) |
| 152 | 151 | ex | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
| 153 | 101 152 | sylbid | ⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
| 154 | 153 | ralrimiva | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
| 155 | 96 154 | jca | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) |
| 156 | 109 | biimpi | ⊢ ( ¬ 0 = 𝐴 → ¬ 𝐴 = 0 ) |
| 157 | 111 | biimpi | ⊢ ( ¬ 0 = 𝐵 → ¬ 𝐵 = 0 ) |
| 158 | 156 157 | anim12i | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
| 159 | 158 114 | sylibr | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 160 | 159 | 3adant3 | ⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 161 | 107 160 | sylbi | ⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 162 | 161 119 | anim12ci | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 163 | 162 121 | syl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
| 164 | 163 124 | syl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
| 165 | 164 131 | jca | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 166 | 165 135 | sylibr | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) |
| 167 | 54 166 | jca | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) ) |
| 168 | lcmn0cl | ⊢ ( ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ) | |
| 169 | 167 168 | syl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ) |
| 170 | 5 | adantl | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ) |
| 171 | tpfi | ⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin | |
| 172 | 171 | a1i | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ) |
| 173 | 3 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
| 174 | 173 | biimpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
| 175 | 174 | con3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 176 | 175 | impcom | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 177 | df-nel | ⊢ ( 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ↔ ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 178 | 176 177 | sylibr | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ) |
| 179 | lcmf | ⊢ ( ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ∧ ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ∧ 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) ) | |
| 180 | 169 170 172 178 179 | syl13anc | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) ) |
| 181 | 155 180 | mpbird | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 182 | 181 | eqcomd | ⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 183 | 50 182 | pm2.61ian | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |