This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmledvds | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → ( 𝑀 lcm 𝑁 ) ≤ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmn0val | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) | |
| 2 | 1 | 3adantl1 | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
| 4 | breq2 | ⊢ ( 𝑛 = 𝐾 → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝐾 ) ) | |
| 5 | breq2 | ⊢ ( 𝑛 = 𝐾 → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝐾 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑛 = 𝐾 → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) |
| 7 | 6 | elrab | ⊢ ( 𝐾 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ↔ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) |
| 8 | ssrab2 | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ℕ | |
| 9 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 10 | 8 9 | sseqtri | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) |
| 11 | infssuzle | ⊢ ( ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝐾 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) | |
| 12 | 10 11 | mpan | ⊢ ( 𝐾 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) |
| 13 | 7 12 | sylbir | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) |
| 14 | 13 | ex | ⊢ ( 𝐾 ∈ ℕ → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) ) |
| 17 | 16 | imp | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ≤ 𝐾 ) |
| 18 | 3 17 | eqbrtrd | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) ≤ 𝐾 ) |
| 19 | 18 | ex | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) → ( 𝑀 lcm 𝑁 ) ≤ 𝐾 ) ) |