This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted universal quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| ralprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| raltpg.3 | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜃 ) ) | ||
| Assertion | raltpg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | ralprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | raltpg.3 | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | 1 2 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) |
| 5 | 3 | ralsng | ⊢ ( 𝐶 ∈ 𝑋 → ( ∀ 𝑥 ∈ { 𝐶 } 𝜑 ↔ 𝜃 ) ) |
| 6 | 4 5 | bi2anan9 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ) |
| 7 | 6 | 3impa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ) |
| 8 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 9 | 8 | raleqi | ⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ∀ 𝑥 ∈ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) 𝜑 ) |
| 10 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ) |
| 12 | df-3an | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) | |
| 13 | 7 11 12 | 3bitr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ) |