This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom | ⊢ ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( 𝑁 = 0 ∨ 𝑀 = 0 ) ) | |
| 2 | ancom | ⊢ ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) ) | |
| 3 | 2 | rabbii | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } = { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } |
| 4 | 3 | infeq1i | ⊢ inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) |
| 5 | 1 4 | ifbieq2i | ⊢ if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) ) |
| 6 | lcmval | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ) | |
| 7 | lcmval | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 lcm 𝑀 ) = if ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) ) ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 lcm 𝑀 ) = if ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 9 | 5 6 8 | 3eqtr4a | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) |