This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmf0val | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lcmf | ⊢ lcm = ( 𝑧 ∈ 𝒫 ℤ ↦ if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) | |
| 2 | eleq2 | ⊢ ( 𝑧 = 𝑍 → ( 0 ∈ 𝑧 ↔ 0 ∈ 𝑍 ) ) | |
| 3 | raleq | ⊢ ( 𝑧 = 𝑍 → ( ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ) ) | |
| 4 | 3 | rabbidv | ⊢ ( 𝑧 = 𝑍 → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) |
| 5 | 4 | infeq1d | ⊢ ( 𝑧 = 𝑍 → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 6 | 2 5 | ifbieq2d | ⊢ ( 𝑧 = 𝑍 → if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 7 | iftrue | ⊢ ( 0 ∈ 𝑍 → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) = 0 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) = 0 ) |
| 9 | 6 8 | sylan9eqr | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) ∧ 𝑧 = 𝑍 ) → if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) = 0 ) |
| 10 | zex | ⊢ ℤ ∈ V | |
| 11 | 10 | ssex | ⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ V ) |
| 12 | elpwg | ⊢ ( 𝑍 ∈ V → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑍 ⊆ ℤ → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) |
| 14 | 13 | ibir | ⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → 𝑍 ∈ 𝒫 ℤ ) |
| 16 | simpr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → 0 ∈ 𝑍 ) | |
| 17 | 1 9 15 16 | fvmptd2 | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) |