This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn , this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmftp | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | eltpg | |- ( 0 e. ZZ -> ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) |
| 4 | 3 | biimpri | |- ( ( 0 = A \/ 0 = B \/ 0 = C ) -> 0 e. { A , B , C } ) |
| 5 | tpssi | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> { A , B , C } C_ ZZ ) |
|
| 6 | 4 5 | anim12ci | |- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( { A , B , C } C_ ZZ /\ 0 e. { A , B , C } ) ) |
| 7 | lcmf0val | |- ( ( { A , B , C } C_ ZZ /\ 0 e. { A , B , C } ) -> ( _lcm ` { A , B , C } ) = 0 ) |
|
| 8 | 6 7 | syl | |- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = 0 ) |
| 9 | 0zd | |- ( C e. ZZ -> 0 e. ZZ ) |
|
| 10 | lcmcom | |- ( ( 0 e. ZZ /\ C e. ZZ ) -> ( 0 lcm C ) = ( C lcm 0 ) ) |
|
| 11 | 9 10 | mpancom | |- ( C e. ZZ -> ( 0 lcm C ) = ( C lcm 0 ) ) |
| 12 | lcm0val | |- ( C e. ZZ -> ( C lcm 0 ) = 0 ) |
|
| 13 | 11 12 | eqtrd | |- ( C e. ZZ -> ( 0 lcm C ) = 0 ) |
| 14 | 13 | eqcomd | |- ( C e. ZZ -> 0 = ( 0 lcm C ) ) |
| 15 | 14 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( 0 lcm C ) ) |
| 16 | 15 | adantl | |- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( 0 lcm C ) ) |
| 17 | 0zd | |- ( B e. ZZ -> 0 e. ZZ ) |
|
| 18 | lcmcom | |- ( ( 0 e. ZZ /\ B e. ZZ ) -> ( 0 lcm B ) = ( B lcm 0 ) ) |
|
| 19 | 17 18 | mpancom | |- ( B e. ZZ -> ( 0 lcm B ) = ( B lcm 0 ) ) |
| 20 | lcm0val | |- ( B e. ZZ -> ( B lcm 0 ) = 0 ) |
|
| 21 | 19 20 | eqtrd | |- ( B e. ZZ -> ( 0 lcm B ) = 0 ) |
| 22 | 21 | eqcomd | |- ( B e. ZZ -> 0 = ( 0 lcm B ) ) |
| 23 | 22 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( 0 lcm B ) ) |
| 24 | 23 | adantl | |- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( 0 lcm B ) ) |
| 25 | 24 | oveq1d | |- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = ( ( 0 lcm B ) lcm C ) ) |
| 26 | oveq1 | |- ( 0 = A -> ( 0 lcm B ) = ( A lcm B ) ) |
|
| 27 | 26 | oveq1d | |- ( 0 = A -> ( ( 0 lcm B ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
| 28 | 27 | adantr | |- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( 0 lcm B ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
| 29 | 16 25 28 | 3eqtrd | |- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 30 | lcm0val | |- ( A e. ZZ -> ( A lcm 0 ) = 0 ) |
|
| 31 | 30 | eqcomd | |- ( A e. ZZ -> 0 = ( A lcm 0 ) ) |
| 32 | 31 | 3ad2ant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( A lcm 0 ) ) |
| 33 | 32 | adantl | |- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( A lcm 0 ) ) |
| 34 | 33 | oveq1d | |- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = ( ( A lcm 0 ) lcm C ) ) |
| 35 | 13 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 lcm C ) = 0 ) |
| 36 | 35 | adantl | |- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = 0 ) |
| 37 | oveq2 | |- ( 0 = B -> ( A lcm 0 ) = ( A lcm B ) ) |
|
| 38 | 37 | adantr | |- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm 0 ) = ( A lcm B ) ) |
| 39 | 38 | oveq1d | |- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm 0 ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
| 40 | 34 36 39 | 3eqtr3d | |- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 41 | lcmcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A lcm B ) e. NN0 ) |
|
| 42 | 41 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A lcm B ) e. ZZ ) |
| 43 | lcm0val | |- ( ( A lcm B ) e. ZZ -> ( ( A lcm B ) lcm 0 ) = 0 ) |
|
| 44 | 43 | eqcomd | |- ( ( A lcm B ) e. ZZ -> 0 = ( ( A lcm B ) lcm 0 ) ) |
| 45 | 42 44 | syl | |- ( ( A e. ZZ /\ B e. ZZ ) -> 0 = ( ( A lcm B ) lcm 0 ) ) |
| 46 | 45 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( ( A lcm B ) lcm 0 ) ) |
| 47 | oveq2 | |- ( 0 = C -> ( ( A lcm B ) lcm 0 ) = ( ( A lcm B ) lcm C ) ) |
|
| 48 | 46 47 | sylan9eqr | |- ( ( 0 = C /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 49 | 29 40 48 | 3jaoian | |- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
| 50 | 8 49 | eqtrd | |- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |
| 51 | 42 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A lcm B ) e. ZZ ) |
| 52 | simp3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. ZZ ) |
|
| 53 | 51 52 | jca | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 54 | 53 | adantl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 55 | dvdslcm | |- ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
|
| 56 | 54 55 | syl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
| 57 | dvdslcm | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || ( A lcm B ) /\ B || ( A lcm B ) ) ) |
|
| 58 | 57 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( A lcm B ) /\ B || ( A lcm B ) ) ) |
| 59 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) |
|
| 60 | lcmcl | |- ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. NN0 ) |
|
| 61 | 53 60 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. NN0 ) |
| 62 | 61 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. ZZ ) |
| 63 | 59 51 62 | 3jca | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
| 64 | dvdstr | |- ( ( A e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) -> ( ( A || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
|
| 65 | 63 64 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 66 | 65 | expd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( A lcm B ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
| 67 | 66 | com12 | |- ( A || ( A lcm B ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
| 68 | 67 | adantr | |- ( ( A || ( A lcm B ) /\ B || ( A lcm B ) ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
| 69 | 58 68 | mpcom | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 70 | 69 | adantl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 71 | 70 | com12 | |- ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 72 | 71 | adantr | |- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
| 73 | 72 | impcom | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> A || ( ( A lcm B ) lcm C ) ) |
| 74 | simpr | |- ( ( A || ( A lcm B ) /\ B || ( A lcm B ) ) -> B || ( A lcm B ) ) |
|
| 75 | 57 74 | syl | |- ( ( A e. ZZ /\ B e. ZZ ) -> B || ( A lcm B ) ) |
| 76 | 75 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B || ( A lcm B ) ) |
| 77 | 76 | adantl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( A lcm B ) ) |
| 78 | simp2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. ZZ ) |
|
| 79 | 78 51 62 | 3jca | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
| 80 | 79 | adantl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
| 81 | dvdstr | |- ( ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) -> ( ( B || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
|
| 82 | 80 81 | syl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( B || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 83 | 77 82 | mpand | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 84 | 83 | com12 | |- ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 85 | 84 | adantr | |- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
| 86 | 85 | impcom | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> B || ( ( A lcm B ) lcm C ) ) |
| 87 | simpr | |- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> C || ( ( A lcm B ) lcm C ) ) |
|
| 88 | 87 | adantl | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> C || ( ( A lcm B ) lcm C ) ) |
| 89 | 73 86 88 | 3jca | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
| 90 | 56 89 | mpdan | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
| 91 | breq1 | |- ( m = A -> ( m || ( ( A lcm B ) lcm C ) <-> A || ( ( A lcm B ) lcm C ) ) ) |
|
| 92 | breq1 | |- ( m = B -> ( m || ( ( A lcm B ) lcm C ) <-> B || ( ( A lcm B ) lcm C ) ) ) |
|
| 93 | breq1 | |- ( m = C -> ( m || ( ( A lcm B ) lcm C ) <-> C || ( ( A lcm B ) lcm C ) ) ) |
|
| 94 | 91 92 93 | raltpg | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) <-> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) ) |
| 95 | 94 | adantl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) <-> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) ) |
| 96 | 90 95 | mpbird | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) ) |
| 97 | breq1 | |- ( m = A -> ( m || k <-> A || k ) ) |
|
| 98 | breq1 | |- ( m = B -> ( m || k <-> B || k ) ) |
|
| 99 | breq1 | |- ( m = C -> ( m || k <-> C || k ) ) |
|
| 100 | 97 98 99 | raltpg | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A. m e. { A , B , C } m || k <-> ( A || k /\ B || k /\ C || k ) ) ) |
| 101 | 100 | ad2antlr | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A. m e. { A , B , C } m || k <-> ( A || k /\ B || k /\ C || k ) ) ) |
| 102 | simpr | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> k e. NN ) |
|
| 103 | 51 | ad2antlr | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) e. ZZ ) |
| 104 | 52 | ad2antlr | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> C e. ZZ ) |
| 105 | 102 103 104 | 3jca | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 106 | 105 | adantr | |- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
| 107 | 3ioran | |- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) <-> ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) ) |
|
| 108 | eqcom | |- ( 0 = A <-> A = 0 ) |
|
| 109 | 108 | notbii | |- ( -. 0 = A <-> -. A = 0 ) |
| 110 | eqcom | |- ( 0 = B <-> B = 0 ) |
|
| 111 | 110 | notbii | |- ( -. 0 = B <-> -. B = 0 ) |
| 112 | 109 111 | anbi12i | |- ( ( -. 0 = A /\ -. 0 = B ) <-> ( -. A = 0 /\ -. B = 0 ) ) |
| 113 | 112 | biimpi | |- ( ( -. 0 = A /\ -. 0 = B ) -> ( -. A = 0 /\ -. B = 0 ) ) |
| 114 | ioran | |- ( -. ( A = 0 \/ B = 0 ) <-> ( -. A = 0 /\ -. B = 0 ) ) |
|
| 115 | 113 114 | sylibr | |- ( ( -. 0 = A /\ -. 0 = B ) -> -. ( A = 0 \/ B = 0 ) ) |
| 116 | 115 | 3adant3 | |- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 117 | 107 116 | sylbi | |- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 118 | id | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
|
| 119 | 118 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 120 | 117 119 | anim12ci | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) ) |
| 121 | lcmn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( A lcm B ) e. NN ) |
|
| 122 | 120 121 | syl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm B ) e. NN ) |
| 123 | nnne0 | |- ( ( A lcm B ) e. NN -> ( A lcm B ) =/= 0 ) |
|
| 124 | 123 | neneqd | |- ( ( A lcm B ) e. NN -> -. ( A lcm B ) = 0 ) |
| 125 | 122 124 | syl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( A lcm B ) = 0 ) |
| 126 | eqcom | |- ( 0 = C <-> C = 0 ) |
|
| 127 | 126 | notbii | |- ( -. 0 = C <-> -. C = 0 ) |
| 128 | 127 | biimpi | |- ( -. 0 = C -> -. C = 0 ) |
| 129 | 128 | 3ad2ant3 | |- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. C = 0 ) |
| 130 | 107 129 | sylbi | |- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. C = 0 ) |
| 131 | 130 | adantr | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. C = 0 ) |
| 132 | 125 131 | jca | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 133 | 132 | adantr | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 134 | 133 | adantr | |- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 135 | ioran | |- ( -. ( ( A lcm B ) = 0 \/ C = 0 ) <-> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
|
| 136 | 134 135 | sylibr | |- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> -. ( ( A lcm B ) = 0 \/ C = 0 ) ) |
| 137 | 119 | adantl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 138 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 139 | 137 138 | anim12ci | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. ZZ /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
| 140 | 3anass | |- ( ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) <-> ( k e. ZZ /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
|
| 141 | 139 140 | sylibr | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) ) |
| 142 | lcmdvds | |- ( ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( A || k /\ B || k ) -> ( A lcm B ) || k ) ) |
|
| 143 | 141 142 | syl | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( ( A || k /\ B || k ) -> ( A lcm B ) || k ) ) |
| 144 | 143 | com12 | |- ( ( A || k /\ B || k ) -> ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) || k ) ) |
| 145 | 144 | 3adant3 | |- ( ( A || k /\ B || k /\ C || k ) -> ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) || k ) ) |
| 146 | 145 | impcom | |- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( A lcm B ) || k ) |
| 147 | simp3 | |- ( ( A || k /\ B || k /\ C || k ) -> C || k ) |
|
| 148 | 147 | adantl | |- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> C || k ) |
| 149 | lcmledvds | |- ( ( ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) -> ( ( ( A lcm B ) || k /\ C || k ) -> ( ( A lcm B ) lcm C ) <_ k ) ) |
|
| 150 | 149 | imp | |- ( ( ( ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) /\ ( ( A lcm B ) || k /\ C || k ) ) -> ( ( A lcm B ) lcm C ) <_ k ) |
| 151 | 106 136 146 148 150 | syl22anc | |- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( ( A lcm B ) lcm C ) <_ k ) |
| 152 | 151 | ex | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( ( A || k /\ B || k /\ C || k ) -> ( ( A lcm B ) lcm C ) <_ k ) ) |
| 153 | 101 152 | sylbid | |- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) |
| 154 | 153 | ralrimiva | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) |
| 155 | 96 154 | jca | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) |
| 156 | 109 | biimpi | |- ( -. 0 = A -> -. A = 0 ) |
| 157 | 111 | biimpi | |- ( -. 0 = B -> -. B = 0 ) |
| 158 | 156 157 | anim12i | |- ( ( -. 0 = A /\ -. 0 = B ) -> ( -. A = 0 /\ -. B = 0 ) ) |
| 159 | 158 114 | sylibr | |- ( ( -. 0 = A /\ -. 0 = B ) -> -. ( A = 0 \/ B = 0 ) ) |
| 160 | 159 | 3adant3 | |- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 161 | 107 160 | sylbi | |- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
| 162 | 161 119 | anim12ci | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) ) |
| 163 | 162 121 | syl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm B ) e. NN ) |
| 164 | 163 124 | syl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( A lcm B ) = 0 ) |
| 165 | 164 131 | jca | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
| 166 | 165 135 | sylibr | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( ( A lcm B ) = 0 \/ C = 0 ) ) |
| 167 | 54 166 | jca | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) ) |
| 168 | lcmn0cl | |- ( ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) -> ( ( A lcm B ) lcm C ) e. NN ) |
|
| 169 | 167 168 | syl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) lcm C ) e. NN ) |
| 170 | 5 | adantl | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> { A , B , C } C_ ZZ ) |
| 171 | tpfi | |- { A , B , C } e. Fin |
|
| 172 | 171 | a1i | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> { A , B , C } e. Fin ) |
| 173 | 3 | a1i | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
| 174 | 173 | biimpd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 e. { A , B , C } -> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
| 175 | 174 | con3d | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. 0 e. { A , B , C } ) ) |
| 176 | 175 | impcom | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. 0 e. { A , B , C } ) |
| 177 | df-nel | |- ( 0 e/ { A , B , C } <-> -. 0 e. { A , B , C } ) |
|
| 178 | 176 177 | sylibr | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 e/ { A , B , C } ) |
| 179 | lcmf | |- ( ( ( ( A lcm B ) lcm C ) e. NN /\ ( { A , B , C } C_ ZZ /\ { A , B , C } e. Fin /\ 0 e/ { A , B , C } ) ) -> ( ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) <-> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) ) |
|
| 180 | 169 170 172 178 179 | syl13anc | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) <-> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) ) |
| 181 | 155 180 | mpbird | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) ) |
| 182 | 181 | eqcomd | |- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |
| 183 | 50 182 | pm2.61ian | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |