This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014) (Proof shortened by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltpg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) | |
| 2 | elsng | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐷 } ↔ 𝐴 = 𝐷 ) ) | |
| 3 | 1 2 | orbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∨ 𝐴 ∈ { 𝐷 } ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ∨ 𝐴 = 𝐷 ) ) ) |
| 4 | df-tp | ⊢ { 𝐵 , 𝐶 , 𝐷 } = ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) | |
| 5 | 4 | eleq2i | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ 𝐴 ∈ ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) ) |
| 6 | elun | ⊢ ( 𝐴 ∈ ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) ↔ ( 𝐴 ∈ { 𝐵 , 𝐶 } ∨ 𝐴 ∈ { 𝐷 } ) ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝐴 ∈ { 𝐵 , 𝐶 } ∨ 𝐴 ∈ { 𝐷 } ) ) |
| 8 | df-3or | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ∨ 𝐴 = 𝐷 ) ) | |
| 9 | 3 7 8 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |