This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmfdvds and lcmfunsnlem (Induction step part 1). (Contributed by AV, 25-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfunsnlem1 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑘 ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) | |
| 2 | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) | |
| 3 | nfv | ⊢ Ⅎ 𝑘 ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑘 ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) |
| 5 | 1 4 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
| 6 | breq2 | ⊢ ( 𝑘 = 𝑙 → ( 𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝑙 ) ) | |
| 7 | 6 | ralbidv | ⊢ ( 𝑘 = 𝑙 → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 ) ) |
| 8 | breq2 | ⊢ ( 𝑘 = 𝑙 → ( ( lcm ‘ 𝑦 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑘 = 𝑙 → ( ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ) ) |
| 10 | 9 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ↔ ∀ 𝑙 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ) |
| 11 | breq2 | ⊢ ( 𝑙 = 𝑘 → ( 𝑚 ∥ 𝑙 ↔ 𝑚 ∥ 𝑘 ) ) | |
| 12 | 11 | ralbidv | ⊢ ( 𝑙 = 𝑘 → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 ↔ ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) ) |
| 13 | breq2 | ⊢ ( 𝑙 = 𝑘 → ( ( lcm ‘ 𝑦 ) ∥ 𝑙 ↔ ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑙 = 𝑘 → ( ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ↔ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 15 | 14 | rspcv | ⊢ ( 𝑘 ∈ ℤ → ( ∀ 𝑙 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑙 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 17 | sneq | ⊢ ( 𝑛 = 𝑧 → { 𝑛 } = { 𝑧 } ) | |
| 18 | 17 | uneq2d | ⊢ ( 𝑛 = 𝑧 → ( 𝑦 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝑛 = 𝑧 → ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) | |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 22 | 21 | rspcv | ⊢ ( 𝑧 ∈ ℤ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 25 | simpr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℤ ) | |
| 26 | lcmfcl | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) | |
| 27 | 26 | nn0zd | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 28 | 27 | 3adant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 30 | simpl1 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → 𝑧 ∈ ℤ ) | |
| 31 | 25 29 30 | 3jca | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) → ( 𝑘 ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) → ( 𝑘 ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 34 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 35 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) ) | |
| 36 | 34 35 | mp1i | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) ) |
| 37 | 36 | imim1d | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 38 | 37 | imp31 | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) |
| 39 | snidg | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ { 𝑧 } ) | |
| 40 | 39 | olcd | ⊢ ( 𝑧 ∈ ℤ → ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) |
| 41 | elun | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) | |
| 42 | 40 41 | sylibr | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 43 | breq1 | ⊢ ( 𝑚 = 𝑧 → ( 𝑚 ∥ 𝑘 ↔ 𝑧 ∥ 𝑘 ) ) | |
| 44 | 43 | rspcv | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → 𝑧 ∥ 𝑘 ) ) |
| 45 | 42 44 | syl | ⊢ ( 𝑧 ∈ ℤ → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → 𝑧 ∥ 𝑘 ) ) |
| 46 | 45 | 3ad2ant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → 𝑧 ∥ 𝑘 ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → 𝑧 ∥ 𝑘 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → 𝑧 ∥ 𝑘 ) ) |
| 49 | 48 | imp | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) → 𝑧 ∥ 𝑘 ) |
| 50 | 38 49 | jca | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) → ( ( lcm ‘ 𝑦 ) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘 ) ) |
| 51 | lcmdvds | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘 ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ 𝑘 ) ) | |
| 52 | 33 50 51 | sylc | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ 𝑘 ) |
| 53 | breq1 | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ↔ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ 𝑘 ) ) | |
| 54 | 52 53 | syl5ibrcom | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
| 55 | 54 | ex | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 56 | 55 | com23 | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) ∧ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 57 | 56 | ex | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) |
| 58 | 24 57 | syl5d | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) |
| 59 | 16 58 | syld | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑙 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) |
| 60 | 10 59 | biimtrid | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) |
| 61 | 60 | impd | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑘 ∈ ℤ ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 62 | 61 | impancom | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑘 ∈ ℤ → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 63 | 5 62 | ralrimi | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |