This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for kelac2 and dfac21 : knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kelac2lem | ⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex | ⊢ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpr | ⊢ ( 𝑥 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ↔ ( 𝑥 = 𝑆 ∨ 𝑥 = { 𝒫 ∪ 𝑆 } ) ) |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 4 | elpr | ⊢ ( 𝑦 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ↔ ( 𝑦 = 𝑆 ∨ 𝑦 = { 𝒫 ∪ 𝑆 } ) ) |
| 6 | eqtr3 | ⊢ ( ( 𝑥 = 𝑆 ∧ 𝑦 = 𝑆 ) → 𝑥 = 𝑦 ) | |
| 7 | 6 | orcd | ⊢ ( ( 𝑥 = 𝑆 ∧ 𝑦 = 𝑆 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 8 | ineq12 | ⊢ ( ( 𝑥 = { 𝒫 ∪ 𝑆 } ∧ 𝑦 = 𝑆 ) → ( 𝑥 ∩ 𝑦 ) = ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) ) | |
| 9 | incom | ⊢ ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) | |
| 10 | pwuninel | ⊢ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 | |
| 11 | disjsn | ⊢ ( ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ ↔ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 ) | |
| 12 | 10 11 | mpbir | ⊢ ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ |
| 13 | 9 12 | eqtri | ⊢ ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ∅ |
| 14 | 8 13 | eqtrdi | ⊢ ( ( 𝑥 = { 𝒫 ∪ 𝑆 } ∧ 𝑦 = 𝑆 ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 15 | 14 | olcd | ⊢ ( ( 𝑥 = { 𝒫 ∪ 𝑆 } ∧ 𝑦 = 𝑆 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 16 | ineq12 | ⊢ ( ( 𝑥 = 𝑆 ∧ 𝑦 = { 𝒫 ∪ 𝑆 } ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) ) | |
| 17 | 16 12 | eqtrdi | ⊢ ( ( 𝑥 = 𝑆 ∧ 𝑦 = { 𝒫 ∪ 𝑆 } ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 18 | 17 | olcd | ⊢ ( ( 𝑥 = 𝑆 ∧ 𝑦 = { 𝒫 ∪ 𝑆 } ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 19 | eqtr3 | ⊢ ( ( 𝑥 = { 𝒫 ∪ 𝑆 } ∧ 𝑦 = { 𝒫 ∪ 𝑆 } ) → 𝑥 = 𝑦 ) | |
| 20 | 19 | orcd | ⊢ ( ( 𝑥 = { 𝒫 ∪ 𝑆 } ∧ 𝑦 = { 𝒫 ∪ 𝑆 } ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 21 | 7 15 18 20 | ccase | ⊢ ( ( ( 𝑥 = 𝑆 ∨ 𝑥 = { 𝒫 ∪ 𝑆 } ) ∧ ( 𝑦 = 𝑆 ∨ 𝑦 = { 𝒫 ∪ 𝑆 } ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 22 | 3 5 21 | syl2anb | ⊢ ( ( 𝑥 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∧ 𝑦 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 23 | 22 | rgen2 | ⊢ ∀ 𝑥 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∀ 𝑦 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 24 | baspartn | ⊢ ( ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V ∧ ∀ 𝑥 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∀ 𝑦 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ TopBases ) | |
| 25 | 1 23 24 | mp2an | ⊢ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ TopBases |
| 26 | tgcl | ⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ TopBases → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) | |
| 27 | 25 26 | mp1i | ⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) |
| 28 | prfi | ⊢ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ Fin | |
| 29 | pwfi | ⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ Fin ↔ 𝒫 { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ Fin ) | |
| 30 | 28 29 | mpbi | ⊢ 𝒫 { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ Fin |
| 31 | tgdom | ⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ≼ 𝒫 { 𝑆 , { 𝒫 ∪ 𝑆 } } ) | |
| 32 | 1 31 | ax-mp | ⊢ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ≼ 𝒫 { 𝑆 , { 𝒫 ∪ 𝑆 } } |
| 33 | domfi | ⊢ ( ( 𝒫 { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ Fin ∧ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ≼ 𝒫 { 𝑆 , { 𝒫 ∪ 𝑆 } } ) → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Fin ) | |
| 34 | 30 32 33 | mp2an | ⊢ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Fin |
| 35 | 34 | a1i | ⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Fin ) |
| 36 | 27 35 | elind | ⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ ( Top ∩ Fin ) ) |
| 37 | fincmp | ⊢ ( ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ ( Top ∩ Fin ) → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp ) | |
| 38 | 36 37 | syl | ⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp ) |