This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | baspartn | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑃 ∈ TopBases ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ∈ 𝑃 ) | |
| 2 | pwidg | ⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ∈ 𝒫 𝑥 ) | |
| 3 | 1 2 | elind | ⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ∈ ( 𝑃 ∩ 𝒫 𝑥 ) ) |
| 4 | elssuni | ⊢ ( 𝑥 ∈ ( 𝑃 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝑃 ∩ 𝒫 𝑥 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ⊆ ∪ ( 𝑃 ∩ 𝒫 𝑥 ) ) |
| 6 | inidm | ⊢ ( 𝑥 ∩ 𝑥 ) = 𝑥 | |
| 7 | ineq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) ) | |
| 8 | 6 7 | eqtr3id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = ( 𝑥 ∩ 𝑦 ) ) |
| 9 | 8 | pweqd | ⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
| 10 | 9 | ineq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∩ 𝒫 𝑥 ) = ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 11 | 10 | unieqd | ⊢ ( 𝑥 = 𝑦 → ∪ ( 𝑃 ∩ 𝒫 𝑥 ) = ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 12 | 8 11 | sseq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ∪ ( 𝑃 ∩ 𝒫 𝑥 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 13 | 5 12 | syl5ibcom | ⊢ ( 𝑥 ∈ 𝑃 → ( 𝑥 = 𝑦 → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 14 | 0ss | ⊢ ∅ ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) | |
| 15 | sseq1 | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∅ ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 16 | 14 15 | mpbiri | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 17 | 16 | a1i | ⊢ ( 𝑥 ∈ 𝑃 → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 18 | 13 17 | jaod | ⊢ ( 𝑥 ∈ 𝑃 → ( ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 19 | 18 | ralimdv | ⊢ ( 𝑥 ∈ 𝑃 → ( ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 20 | 19 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 22 | isbasisg | ⊢ ( 𝑃 ∈ 𝑉 → ( 𝑃 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( 𝑃 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 24 | 21 23 | mpbird | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑃 ∈ TopBases ) |