This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerclass of the union of a class does not belong to that class. This theorem provides a way of constructing a new set that does not belong to a given set. See also pwuninel2 . (Contributed by NM, 27-Jun-2008) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwuninel | ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexr | ⊢ ( 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V ) | |
| 2 | pwuninel2 | ⊢ ( ∪ 𝐴 ∈ V → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 ) |
| 4 | id | ⊢ ( ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 ) | |
| 5 | 3 4 | pm2.61i | ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |