This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015) (Revised by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac21 | ⊢ ( CHOICE ↔ ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑓 ∈ V | |
| 2 | 1 | dmex | ⊢ dom 𝑓 ∈ V |
| 3 | 2 | a1i | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → dom 𝑓 ∈ V ) |
| 4 | simpr | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → 𝑓 : dom 𝑓 ⟶ Comp ) | |
| 5 | fvex | ⊢ ( ∏t ‘ 𝑓 ) ∈ V | |
| 6 | 5 | uniex | ⊢ ∪ ( ∏t ‘ 𝑓 ) ∈ V |
| 7 | acufl | ⊢ ( CHOICE → UFL = V ) | |
| 8 | 7 | adantr | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → UFL = V ) |
| 9 | 6 8 | eleqtrrid | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → ∪ ( ∏t ‘ 𝑓 ) ∈ UFL ) |
| 10 | simpl | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → CHOICE ) | |
| 11 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
| 12 | 10 11 | sylib | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → dom card = V ) |
| 13 | 6 12 | eleqtrrid | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → ∪ ( ∏t ‘ 𝑓 ) ∈ dom card ) |
| 14 | 9 13 | elind | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → ∪ ( ∏t ‘ 𝑓 ) ∈ ( UFL ∩ dom card ) ) |
| 15 | eqid | ⊢ ( ∏t ‘ 𝑓 ) = ( ∏t ‘ 𝑓 ) | |
| 16 | eqid | ⊢ ∪ ( ∏t ‘ 𝑓 ) = ∪ ( ∏t ‘ 𝑓 ) | |
| 17 | 15 16 | ptcmpg | ⊢ ( ( dom 𝑓 ∈ V ∧ 𝑓 : dom 𝑓 ⟶ Comp ∧ ∪ ( ∏t ‘ 𝑓 ) ∈ ( UFL ∩ dom card ) ) → ( ∏t ‘ 𝑓 ) ∈ Comp ) |
| 18 | 3 4 14 17 | syl3anc | ⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Comp ) → ( ∏t ‘ 𝑓 ) ∈ Comp ) |
| 19 | 18 | ex | ⊢ ( CHOICE → ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) ) |
| 20 | 19 | alrimiv | ⊢ ( CHOICE → ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) ) |
| 21 | fvex | ⊢ ( 𝑔 ‘ 𝑦 ) ∈ V | |
| 22 | kelac2lem | ⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ V → ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ∈ Comp ) | |
| 23 | 21 22 | mp1i | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ 𝑦 ∈ dom 𝑔 ) → ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ∈ Comp ) |
| 24 | 23 | fmpttd | ⊢ ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) : dom 𝑔 ⟶ Comp ) |
| 25 | 24 | ffdmd | ⊢ ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) : dom ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ⟶ Comp ) |
| 26 | vex | ⊢ 𝑔 ∈ V | |
| 27 | 26 | dmex | ⊢ dom 𝑔 ∈ V |
| 28 | 27 | mptex | ⊢ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ∈ V |
| 29 | id | ⊢ ( 𝑓 = ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) → 𝑓 = ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) | |
| 30 | dmeq | ⊢ ( 𝑓 = ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) → dom 𝑓 = dom ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) | |
| 31 | 29 30 | feq12d | ⊢ ( 𝑓 = ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) → ( 𝑓 : dom 𝑓 ⟶ Comp ↔ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) : dom ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ⟶ Comp ) ) |
| 32 | fveq2 | ⊢ ( 𝑓 = ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) → ( ∏t ‘ 𝑓 ) = ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ) | |
| 33 | 32 | eleq1d | ⊢ ( 𝑓 = ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) → ( ( ∏t ‘ 𝑓 ) ∈ Comp ↔ ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) ) |
| 34 | 31 33 | imbi12d | ⊢ ( 𝑓 = ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) → ( ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) ↔ ( ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) : dom ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ⟶ Comp → ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) ) ) |
| 35 | 28 34 | spcv | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) → ( ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) : dom ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ⟶ Comp → ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) ) |
| 36 | 25 35 | syl5com | ⊢ ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) → ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) ) |
| 37 | fvex | ⊢ ( 𝑔 ‘ 𝑥 ) ∈ V | |
| 38 | 37 | a1i | ⊢ ( ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ V ) |
| 39 | df-nel | ⊢ ( ∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔 ) | |
| 40 | 39 | biimpi | ⊢ ( ∅ ∉ ran 𝑔 → ¬ ∅ ∈ ran 𝑔 ) |
| 41 | 40 | ad2antlr | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ 𝑥 ∈ dom 𝑔 ) → ¬ ∅ ∈ ran 𝑔 ) |
| 42 | fvelrn | ⊢ ( ( Fun 𝑔 ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) | |
| 43 | 42 | adantlr | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) |
| 44 | eleq1 | ⊢ ( ( 𝑔 ‘ 𝑥 ) = ∅ → ( ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔 ) ) | |
| 45 | 43 44 | syl5ibcom | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ( 𝑔 ‘ 𝑥 ) = ∅ → ∅ ∈ ran 𝑔 ) ) |
| 46 | 45 | necon3bd | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ¬ ∅ ∈ ran 𝑔 → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 47 | 41 46 | mpd | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 48 | 47 | adantlr | ⊢ ( ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 49 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 50 | 49 | unieqd | ⊢ ( 𝑦 = 𝑥 → ∪ ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝑔 ‘ 𝑥 ) ) |
| 51 | 50 | pweqd | ⊢ ( 𝑦 = 𝑥 → 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ) |
| 52 | 51 | sneqd | ⊢ ( 𝑦 = 𝑥 → { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } = { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
| 53 | 49 52 | preq12d | ⊢ ( 𝑦 = 𝑥 → { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } = { ( 𝑔 ‘ 𝑥 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } } ) |
| 54 | 53 | fveq2d | ⊢ ( 𝑦 = 𝑥 → ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) = ( topGen ‘ { ( 𝑔 ‘ 𝑥 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } } ) ) |
| 55 | 54 | cbvmptv | ⊢ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) = ( 𝑥 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑥 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } } ) ) |
| 56 | 55 | fveq2i | ⊢ ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) = ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑥 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } } ) ) ) |
| 57 | 56 | eleq1i | ⊢ ( ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑥 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } } ) ) ) ∈ Comp ) |
| 58 | 57 | biimpi | ⊢ ( ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp → ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑥 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } } ) ) ) ∈ Comp ) |
| 59 | 58 | adantl | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) → ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑥 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } } ) ) ) ∈ Comp ) |
| 60 | 38 48 59 | kelac2 | ⊢ ( ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ∧ ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 61 | 60 | ex | ⊢ ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → ( ( ∏t ‘ ( 𝑦 ∈ dom 𝑔 ↦ ( topGen ‘ { ( 𝑔 ‘ 𝑦 ) , { 𝒫 ∪ ( 𝑔 ‘ 𝑦 ) } } ) ) ) ∈ Comp → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 62 | 36 61 | syldc | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) → ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 63 | 62 | alrimiv | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) → ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 64 | dfac9 | ⊢ ( CHOICE ↔ ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) | |
| 65 | 63 64 | sylibr | ⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) → CHOICE ) |
| 66 | 20 65 | impbii | ⊢ ( CHOICE ↔ ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Comp → ( ∏t ‘ 𝑓 ) ∈ Comp ) ) |