This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999) (Proof shortened by Wolf Lammen, 6-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ccase.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) | |
| ccase.2 | ⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜏 ) | ||
| ccase.3 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) | ||
| ccase.4 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | ccase | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccase.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) | |
| 2 | ccase.2 | ⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜏 ) | |
| 3 | ccase.3 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) | |
| 4 | ccase.4 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) | |
| 5 | 1 2 | jaoian | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ 𝜓 ) → 𝜏 ) |
| 6 | 3 4 | jaoian | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
| 7 | 5 6 | jaodan | ⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜏 ) |