This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kelac2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) | |
| kelac2.z | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) | ||
| kelac2.k | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) ∈ Comp ) | ||
| Assertion | kelac2 | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kelac2.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) | |
| 2 | kelac2.z | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) | |
| 3 | kelac2.k | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) ∈ Comp ) | |
| 4 | kelac2lem | ⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp ) | |
| 5 | cmptop | ⊢ ( ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) | |
| 6 | 1 4 5 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) |
| 7 | uncom | ⊢ ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) = ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) | |
| 8 | 7 | difeq1i | ⊢ ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) = ( ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) ∖ 𝑆 ) |
| 9 | difun2 | ⊢ ( ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) ∖ 𝑆 ) = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) | |
| 10 | 8 9 | eqtri | ⊢ ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) |
| 11 | snex | ⊢ { 𝒫 ∪ 𝑆 } ∈ V | |
| 12 | uniprg | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ { 𝒫 ∪ 𝑆 } ∈ V ) → ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ) | |
| 13 | 1 11 12 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ) |
| 14 | 13 | difeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) = ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) ) |
| 15 | incom | ⊢ ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) | |
| 16 | pwuninel | ⊢ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 | |
| 17 | 16 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 ) |
| 18 | disjsn | ⊢ ( ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ ↔ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ ) |
| 20 | 15 19 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ∅ ) |
| 21 | disj3 | ⊢ ( ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ∅ ↔ { 𝒫 ∪ 𝑆 } = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) ) | |
| 22 | 20 21 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) ) |
| 23 | 10 14 22 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) = { 𝒫 ∪ 𝑆 } ) |
| 24 | prex | ⊢ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V | |
| 25 | bastg | ⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V → { 𝑆 , { 𝒫 ∪ 𝑆 } } ⊆ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) | |
| 26 | 24 25 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝑆 , { 𝒫 ∪ 𝑆 } } ⊆ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 27 | 11 | prid2 | ⊢ { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } |
| 28 | 27 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 29 | 26 28 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 30 | 23 29 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 31 | prid1g | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) | |
| 32 | elssuni | ⊢ ( 𝑆 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } → 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) | |
| 33 | 1 31 32 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 34 | unitg | ⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V → ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) = ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) | |
| 35 | 24 34 | ax-mp | ⊢ ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) = ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } |
| 36 | 35 | eqcomi | ⊢ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 37 | 36 | iscld2 | ⊢ ( ( ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ∧ 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) → ( 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ↔ ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
| 38 | 6 33 37 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ↔ ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
| 39 | 30 38 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
| 40 | f1oi | ⊢ ( I ↾ 𝑆 ) : 𝑆 –1-1-onto→ 𝑆 | |
| 41 | 40 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( I ↾ 𝑆 ) : 𝑆 –1-1-onto→ 𝑆 ) |
| 42 | elssuni | ⊢ ( { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } → { 𝒫 ∪ 𝑆 } ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) | |
| 43 | 27 42 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 44 | uniexg | ⊢ ( 𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V ) | |
| 45 | pwexg | ⊢ ( ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ V ) | |
| 46 | snidg | ⊢ ( 𝒫 ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ { 𝒫 ∪ 𝑆 } ) | |
| 47 | 1 44 45 46 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ { 𝒫 ∪ 𝑆 } ) |
| 48 | 43 47 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 49 | 48 35 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 50 | 2 6 39 41 49 3 | kelac1 | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |