This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015) (Revised by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgdom | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | ⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V ) | |
| 2 | inss1 | ⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵 | |
| 3 | vpwex | ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 3 | inex2 | ⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ∈ V |
| 5 | 4 | elpw | ⊢ ( ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵 ) |
| 6 | 2 5 | mpbir | ⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 |
| 7 | 6 | a1i | ⊢ ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 ) |
| 8 | unieq | ⊢ ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) → ∪ ( 𝐵 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → ∪ ( 𝐵 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) |
| 10 | eltg4i | ⊢ ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) | |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑥 = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 12 | eltg4i | ⊢ ( 𝑦 ∈ ( topGen ‘ 𝐵 ) → 𝑦 = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) | |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑦 = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) |
| 14 | 9 11 13 | 3eqtr4d | ⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 15 | 14 | ex | ⊢ ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) → ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 16 | pweq | ⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) | |
| 17 | 16 | ineq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) |
| 18 | 15 17 | impbid1 | ⊢ ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) → ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 19 | 7 18 | dom2 | ⊢ ( 𝒫 𝐵 ∈ V → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 ) |
| 20 | 1 19 | syl | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 ) |