This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2split . (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2split.a | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| itg2split.b | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | ||
| itg2split.i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | ||
| itg2split.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| itg2split.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) | ||
| itg2split.f | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) | ||
| itg2split.g | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) | ||
| itg2split.h | ⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) | ||
| itg2split.sf | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| itg2split.sg | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | ||
| Assertion | itg2splitlem | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2split.a | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| 2 | itg2split.b | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | |
| 3 | itg2split.i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | |
| 4 | itg2split.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 5 | itg2split.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) | |
| 6 | itg2split.f | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) | |
| 7 | itg2split.g | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) | |
| 8 | itg2split.h | ⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) | |
| 9 | itg2split.sf | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 10 | itg2split.sg | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 ∈ dom ∫1 ) | |
| 12 | itg1cl | ⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐴 ∈ dom vol ) |
| 15 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) | |
| 16 | 15 | i1fres | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 17 | 11 14 16 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 18 | itg1cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 20 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐵 ∈ dom vol ) |
| 21 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) | |
| 22 | 21 | i1fres | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝐵 ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 23 | 11 20 22 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 24 | itg1cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 26 | 19 25 | readdcld | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ∈ ℝ ) |
| 27 | 9 10 | readdcld | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 29 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 30 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 31 | 1 30 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 32 | 29 31 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 34 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 35 | reex | ⊢ ℝ ∈ V | |
| 36 | 35 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 37 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 38 | c0ex | ⊢ 0 ∈ V | |
| 39 | 37 38 | ifex | ⊢ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 41 | 37 38 | ifex | ⊢ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V |
| 42 | 41 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 43 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) | |
| 44 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) | |
| 45 | 36 40 42 43 44 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) |
| 47 | 17 23 | i1fadd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ) |
| 48 | 46 47 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ) |
| 49 | i1ff | ⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) | |
| 50 | 11 49 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 : ℝ ⟶ ℝ ) |
| 51 | eldifi | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → 𝑦 ∈ ℝ ) | |
| 52 | ffvelcdm | ⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ∈ ℝ ) | |
| 53 | 50 51 52 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ℝ ) |
| 54 | 53 | leidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑓 ‘ 𝑦 ) ) |
| 55 | 54 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑓 ‘ 𝑦 ) ) |
| 56 | iftrue | ⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 57 | 56 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 58 | eldifn | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → ¬ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) | |
| 59 | 58 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 60 | elin | ⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 61 | 59 60 | sylnib | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 62 | imnan | ⊢ ( ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝐵 ) ↔ ¬ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 63 | 61 62 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝐵 ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑦 ∈ 𝐵 ) |
| 65 | iffalse | ⊢ ( ¬ 𝑦 ∈ 𝐵 → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) | |
| 66 | 64 65 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 67 | 57 66 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑓 ‘ 𝑦 ) + 0 ) ) |
| 68 | 53 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ℂ ) |
| 69 | 68 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ ℂ ) |
| 70 | 69 | addridd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑦 ) + 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 71 | 67 70 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = ( 𝑓 ‘ 𝑦 ) ) |
| 72 | 55 71 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 73 | 54 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑓 ‘ 𝑦 ) ) |
| 74 | iftrue | ⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 75 | 74 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 76 | 73 75 | breqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 77 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 78 | 77 | eleq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 79 | elun | ⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) | |
| 80 | 78 79 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑈 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) ) |
| 81 | 80 | notbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ¬ 𝑦 ∈ 𝑈 ↔ ¬ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) ) |
| 82 | ioran | ⊢ ( ¬ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) | |
| 83 | 81 82 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ¬ 𝑦 ∈ 𝑈 ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) ) |
| 84 | 83 | biimpar | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑦 ∈ 𝑈 ) |
| 85 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 ∘r ≤ 𝐻 ) | |
| 86 | 50 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝑓 Fn ℝ ) |
| 87 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 88 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 89 | 88 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝑈 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 90 | 87 89 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 91 | 90 8 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 92 | 91 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn ℝ ) |
| 93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐻 Fn ℝ ) |
| 94 | 35 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ℝ ∈ V ) |
| 95 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 96 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 97 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 98 | 86 93 94 94 95 96 97 | ofrfval | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑓 ∘r ≤ 𝐻 ↔ ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 99 | 85 98 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑦 ∈ ℝ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 100 | 99 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 101 | 51 100 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 102 | 101 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 103 | 51 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑦 ∈ ℝ ) |
| 104 | eldif | ⊢ ( 𝑦 ∈ ( ℝ ∖ 𝑈 ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝑈 ) ) | |
| 105 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 106 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) | |
| 107 | 8 106 | nfcxfr | ⊢ Ⅎ 𝑥 𝐻 |
| 108 | 107 105 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) |
| 109 | 108 | nfeq1 | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) = 0 |
| 110 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) = 0 ↔ ( 𝐻 ‘ 𝑦 ) = 0 ) ) | |
| 111 | eldif | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝑈 ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝑈 ) ) | |
| 112 | 8 | fvmpt2i | ⊢ ( 𝑥 ∈ ℝ → ( 𝐻 ‘ 𝑥 ) = ( I ‘ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 113 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝑈 → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 0 ) | |
| 114 | 113 | fveq2d | ⊢ ( ¬ 𝑥 ∈ 𝑈 → ( I ‘ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) = ( I ‘ 0 ) ) |
| 115 | 0cn | ⊢ 0 ∈ ℂ | |
| 116 | fvi | ⊢ ( 0 ∈ ℂ → ( I ‘ 0 ) = 0 ) | |
| 117 | 115 116 | ax-mp | ⊢ ( I ‘ 0 ) = 0 |
| 118 | 114 117 | eqtrdi | ⊢ ( ¬ 𝑥 ∈ 𝑈 → ( I ‘ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) = 0 ) |
| 119 | 112 118 | sylan9eq | ⊢ ( ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝑈 ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
| 120 | 111 119 | sylbi | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝑈 ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
| 121 | 105 109 110 120 | vtoclgaf | ⊢ ( 𝑦 ∈ ( ℝ ∖ 𝑈 ) → ( 𝐻 ‘ 𝑦 ) = 0 ) |
| 122 | 104 121 | sylbir | ⊢ ( ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝐻 ‘ 𝑦 ) = 0 ) |
| 123 | 103 122 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝐻 ‘ 𝑦 ) = 0 ) |
| 124 | 102 123 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝑈 ) → ( 𝑓 ‘ 𝑦 ) ≤ 0 ) |
| 125 | 84 124 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ≤ 0 ) |
| 126 | 125 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ 0 ) |
| 127 | 65 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 128 | 126 127 | breqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ≤ if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 129 | 76 128 | pm2.61dan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 130 | iffalse | ⊢ ( ¬ 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) | |
| 131 | 130 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) = 0 ) |
| 132 | 131 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = ( 0 + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 133 | 0re | ⊢ 0 ∈ ℝ | |
| 134 | ifcl | ⊢ ( ( ( 𝑓 ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℝ ) | |
| 135 | 53 133 134 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℝ ) |
| 136 | 135 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℂ ) |
| 137 | 136 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ∈ ℂ ) |
| 138 | 137 | addlidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 0 + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 139 | 132 138 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) = if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 140 | 129 139 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≤ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 141 | 72 140 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 142 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 143 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 144 | 142 143 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 145 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 146 | 145 143 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) |
| 147 | 144 146 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 148 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) | |
| 149 | ovex | ⊢ ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ∈ V | |
| 150 | 147 148 149 | fvmpt | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑦 ) = ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 151 | 103 150 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑦 ) = ( if ( 𝑦 ∈ 𝐴 , ( 𝑓 ‘ 𝑦 ) , 0 ) + if ( 𝑦 ∈ 𝐵 , ( 𝑓 ‘ 𝑦 ) , 0 ) ) ) |
| 152 | 141 151 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑦 ) ) |
| 153 | 11 33 34 48 152 | itg1lea | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 154 | 46 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 155 | 17 23 | itg1add | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 156 | 154 155 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ ( if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) + if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) = ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 157 | 153 156 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 158 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 159 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 160 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 161 | 160 4 | sseqtrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 162 | 161 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 163 | 162 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 164 | 163 87 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 165 | 88 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 166 | 164 165 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 167 | 166 6 | fmptd | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 168 | 167 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 169 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 170 | nfv | ⊢ Ⅎ 𝑥 𝑓 ∈ dom ∫1 | |
| 171 | nfcv | ⊢ Ⅎ 𝑥 𝑓 | |
| 172 | nfcv | ⊢ Ⅎ 𝑥 ∘r ≤ | |
| 173 | 171 172 107 | nfbr | ⊢ Ⅎ 𝑥 𝑓 ∘r ≤ 𝐻 |
| 174 | 170 173 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) |
| 175 | 169 174 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) |
| 176 | 14 30 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐴 ⊆ ℝ ) |
| 177 | 176 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 178 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 179 | 37 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ V ) |
| 180 | 90 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 181 | 49 | adantl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 : ℝ ⟶ ℝ ) |
| 182 | 181 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 183 | 8 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 184 | 178 179 180 182 183 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐻 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 185 | 184 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐻 → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) ) |
| 186 | 185 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 187 | 186 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 188 | 177 187 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 189 | 162 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 190 | 189 | iftrued | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 𝐶 ) |
| 191 | 188 190 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ 𝐶 ) |
| 192 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 193 | 192 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 194 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 195 | 194 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 196 | 191 193 195 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 197 | 0le0 | ⊢ 0 ≤ 0 | |
| 198 | 197 | a1i | ⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 199 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) = 0 ) | |
| 200 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) | |
| 201 | 198 199 200 | 3brtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 202 | 201 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 203 | 196 202 | pm2.61dan | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 204 | 203 | a1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 205 | 175 204 | ralrimi | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 206 | 6 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 207 | 36 40 166 43 206 | ofrfval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 208 | 207 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 209 | 205 208 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ) |
| 210 | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 211 | 168 17 209 210 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 212 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 213 | 212 4 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 214 | 213 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 215 | 214 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 216 | 215 87 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 217 | 88 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 218 | 216 217 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 219 | 218 7 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 220 | 219 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 221 | mblss | ⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) | |
| 222 | 20 221 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → 𝐵 ⊆ ℝ ) |
| 223 | 222 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 224 | 223 187 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 225 | 214 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 226 | 225 | iftrued | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 𝐶 ) |
| 227 | 224 226 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑥 ) ≤ 𝐶 ) |
| 228 | iftrue | ⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 229 | 228 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 230 | iftrue | ⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) | |
| 231 | 230 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) |
| 232 | 227 229 231 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 233 | 197 | a1i | ⊢ ( ¬ 𝑥 ∈ 𝐵 → 0 ≤ 0 ) |
| 234 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) = 0 ) | |
| 235 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) | |
| 236 | 233 234 235 | 3brtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 237 | 236 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) ∧ ¬ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 238 | 232 237 | pm2.61dan | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 239 | 238 | a1d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 240 | 175 239 | ralrimi | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 241 | 7 | a1i | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 242 | 36 42 218 44 241 | ofrfval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 243 | 242 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 244 | 240 243 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ) |
| 245 | itg2ub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∘r ≤ 𝐺 ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐺 ) ) | |
| 246 | 220 23 244 245 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 247 | 19 25 158 159 211 246 | le2addd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) + ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 248 | 13 26 28 157 247 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐻 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 249 | 248 | expr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 250 | 249 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 251 | 27 | rexrd | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) |
| 252 | itg2leub | ⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) ) | |
| 253 | 91 251 252 | syl2anc | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐻 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 254 | 250 253 | mpbird | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |