This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The S.2 integral splits under an almost disjoint union. The proof avoids the use of itg2add , which requires countable choice. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2split.a | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| itg2split.b | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | ||
| itg2split.i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | ||
| itg2split.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| itg2split.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) | ||
| itg2split.f | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) | ||
| itg2split.g | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) | ||
| itg2split.h | ⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) | ||
| itg2split.sf | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| itg2split.sg | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | ||
| Assertion | itg2split | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2split.a | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| 2 | itg2split.b | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | |
| 3 | itg2split.i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | |
| 4 | itg2split.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 5 | itg2split.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) | |
| 6 | itg2split.f | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) | |
| 7 | itg2split.g | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) | |
| 8 | itg2split.h | ⊢ 𝐻 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) | |
| 9 | itg2split.sf | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 10 | itg2split.sg | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | |
| 11 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 12 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 13 | 12 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝑈 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 14 | 11 13 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 15 | 14 8 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 16 | itg2cl | ⊢ ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ* ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ∈ ℝ* ) |
| 18 | 9 10 | readdcld | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 19 | 18 | rexrd | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) |
| 20 | 1 2 3 4 5 6 7 8 9 10 | itg2splitlem | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 21 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 22 | itg2lecl | ⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ∧ ( ∫2 ‘ 𝐻 ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) | |
| 23 | 15 18 20 22 | syl3anc | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) |
| 25 | itg1cl | ⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) | |
| 26 | 25 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 27 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 ∈ dom ∫1 ) | |
| 28 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 ∈ dom ∫1 ) | |
| 29 | 27 28 | itg1add | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ ( 𝑓 ∘f + 𝑔 ) ) = ( ( ∫1 ‘ 𝑓 ) + ( ∫1 ‘ 𝑔 ) ) ) |
| 30 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 31 | 27 28 | i1fadd | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑓 ∘f + 𝑔 ) ∈ dom ∫1 ) |
| 32 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 33 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 34 | 1 33 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 35 | 32 34 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ℝ ) |
| 37 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 38 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 39 | nfv | ⊢ Ⅎ 𝑥 𝑓 ∈ dom ∫1 | |
| 40 | nfcv | ⊢ Ⅎ 𝑥 𝑓 | |
| 41 | nfcv | ⊢ Ⅎ 𝑥 ∘r ≤ | |
| 42 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) | |
| 43 | 6 42 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 44 | 40 41 43 | nfbr | ⊢ Ⅎ 𝑥 𝑓 ∘r ≤ 𝐹 |
| 45 | 39 44 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) |
| 46 | nfv | ⊢ Ⅎ 𝑥 𝑔 ∈ dom ∫1 | |
| 47 | nfcv | ⊢ Ⅎ 𝑥 𝑔 | |
| 48 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) | |
| 49 | 7 48 | nfcxfr | ⊢ Ⅎ 𝑥 𝐺 |
| 50 | 47 41 49 | nfbr | ⊢ Ⅎ 𝑥 𝑔 ∘r ≤ 𝐺 |
| 51 | 46 50 | nfan | ⊢ Ⅎ 𝑥 ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) |
| 52 | 45 51 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) |
| 53 | 38 52 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) |
| 54 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → 𝑥 ∈ ℝ ) | |
| 55 | i1ff | ⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) | |
| 56 | 27 55 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 : ℝ ⟶ ℝ ) |
| 57 | 56 | ffnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 Fn ℝ ) |
| 58 | i1ff | ⊢ ( 𝑔 ∈ dom ∫1 → 𝑔 : ℝ ⟶ ℝ ) | |
| 59 | 28 58 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 : ℝ ⟶ ℝ ) |
| 60 | 59 | ffnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 Fn ℝ ) |
| 61 | reex | ⊢ ℝ ∈ V | |
| 62 | 61 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ℝ ∈ V ) |
| 63 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 64 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 65 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 66 | 57 60 62 62 63 64 65 | ofval | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) |
| 67 | 54 66 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ) |
| 68 | ffvelcdm | ⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) | |
| 69 | 56 54 68 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 70 | ffvelcdm | ⊢ ( ( 𝑔 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) | |
| 71 | 59 54 70 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 72 | 69 71 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
| 73 | 72 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 75 | 69 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 76 | 75 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ* ) |
| 77 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 78 | ffvelcdm | ⊢ ( ( 𝐻 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) | |
| 79 | 30 54 78 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 80 | 77 79 | sselid | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) |
| 81 | 80 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) |
| 82 | 71 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 83 | 0red | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 84 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑔 ∘r ≤ 𝐺 ) | |
| 85 | 61 | a1i | ⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → ℝ ∈ V ) |
| 86 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑔 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ∈ V ) | |
| 87 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 88 | 87 4 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 89 | 88 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 90 | 89 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 91 | 90 11 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 92 | 12 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 93 | 91 92 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 94 | 93 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑔 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 95 | simpr | ⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → 𝑔 Fn ℝ ) | |
| 96 | dffn5 | ⊢ ( 𝑔 Fn ℝ ↔ 𝑔 = ( 𝑥 ∈ ℝ ↦ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 97 | 95 96 | sylib | ⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → 𝑔 = ( 𝑥 ∈ ℝ ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 98 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 99 | 85 86 94 97 98 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑔 Fn ℝ ) → ( 𝑔 ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 100 | 60 99 | syldan | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑔 ∘r ≤ 𝐺 ↔ ∀ 𝑥 ∈ ℝ ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 101 | 84 100 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 102 | 101 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 103 | 54 102 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 104 | 103 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 105 | eldifn | ⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) | |
| 106 | 105 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 107 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 108 | 106 107 | sylnib | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 109 | imnan | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 110 | 108 109 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 111 | 110 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 112 | 111 | iffalsed | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) |
| 113 | 104 112 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ 0 ) |
| 114 | 82 83 75 113 | leadd2dd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + 0 ) ) |
| 115 | 75 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 116 | 115 | addridd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + 0 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 117 | 114 116 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 118 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → 𝑓 ∘r ≤ 𝐹 ) | |
| 119 | 61 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → ℝ ∈ V ) |
| 120 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑓 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ V ) | |
| 121 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 122 | 121 4 | sseqtrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 123 | 122 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 124 | 123 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 125 | 124 11 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 126 | 12 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 127 | 125 126 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 128 | 127 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 Fn ℝ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 129 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → 𝑓 Fn ℝ ) | |
| 130 | dffn5 | ⊢ ( 𝑓 Fn ℝ ↔ 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 131 | 129 130 | sylib | ⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → 𝑓 = ( 𝑥 ∈ ℝ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 132 | 6 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 133 | 119 120 128 131 132 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑓 Fn ℝ ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 134 | 57 133 | syldan | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) ) |
| 135 | 118 134 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 136 | 135 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 137 | 54 136 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 138 | 137 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 139 | 122 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐴 ⊆ 𝑈 ) |
| 140 | 139 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 141 | 140 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = 𝐶 ) |
| 142 | simpr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 143 | 14 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 144 | 8 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 145 | 142 143 144 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 146 | 54 145 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 147 | 146 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 148 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 149 | 148 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 150 | 141 147 149 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 151 | 138 150 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 152 | 74 76 81 117 151 | xrletrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 153 | 73 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 154 | 71 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 155 | 154 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ* ) |
| 156 | 80 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ* ) |
| 157 | 69 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 158 | 0red | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) | |
| 159 | 137 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 160 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) | |
| 161 | 160 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 162 | 159 161 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ≤ 0 ) |
| 163 | 157 158 154 162 | leadd1dd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 0 + ( 𝑔 ‘ 𝑥 ) ) ) |
| 164 | 154 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ℂ ) |
| 165 | 164 | addlidd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 0 + ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ‘ 𝑥 ) ) |
| 166 | 163 165 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑔 ‘ 𝑥 ) ) |
| 167 | 103 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 168 | 146 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) |
| 169 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 170 | 169 | eleq2d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 171 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 172 | biorf | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) | |
| 173 | 171 172 | bitr4id | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 174 | 173 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 175 | 170 174 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ 𝐵 ) ) |
| 176 | 175 | ifbid | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 177 | 168 176 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 178 | 167 177 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 179 | 153 155 156 166 178 | xrletrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 180 | 152 179 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 181 | 67 180 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 182 | 181 | ex | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) ) |
| 183 | 53 182 | ralrimi | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ) |
| 184 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) | |
| 185 | nfcv | ⊢ Ⅎ 𝑥 ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) | |
| 186 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 187 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , 𝐶 , 0 ) ) | |
| 188 | 8 187 | nfcxfr | ⊢ Ⅎ 𝑥 𝐻 |
| 189 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 190 | 188 189 | nffv | ⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) |
| 191 | 185 186 190 | nfbr | ⊢ Ⅎ 𝑥 ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) |
| 192 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) = ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ) | |
| 193 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 194 | 192 193 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) ) |
| 195 | 184 191 194 | cbvralw | ⊢ ( ∀ 𝑥 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑥 ) ≤ ( 𝐻 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 196 | 183 195 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ∀ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 197 | 196 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) ∧ 𝑦 ∈ ( ℝ ∖ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) ‘ 𝑦 ) ≤ ( 𝐻 ‘ 𝑦 ) ) |
| 198 | 30 31 36 37 197 | itg2uba | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ ( 𝑓 ∘f + 𝑔 ) ) ≤ ( ∫2 ‘ 𝐻 ) ) |
| 199 | 29 198 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ( ∫1 ‘ 𝑓 ) + ( ∫1 ‘ 𝑔 ) ) ≤ ( ∫2 ‘ 𝐻 ) ) |
| 200 | 26 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 201 | itg1cl | ⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) | |
| 202 | 28 201 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) |
| 203 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫2 ‘ 𝐻 ) ∈ ℝ ) |
| 204 | 200 202 203 | leaddsub2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ( ( ∫1 ‘ 𝑓 ) + ( ∫1 ‘ 𝑔 ) ) ≤ ( ∫2 ‘ 𝐻 ) ↔ ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) |
| 205 | 199 204 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) |
| 206 | 205 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ ( 𝑔 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐺 ) ) → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) |
| 207 | 206 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) |
| 208 | 207 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) |
| 209 | 93 7 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 210 | 209 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 211 | 24 26 | resubcld | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ∈ ℝ ) |
| 212 | 211 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ∈ ℝ* ) |
| 213 | itg2leub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐺 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) ) | |
| 214 | 210 212 213 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ( ∫2 ‘ 𝐺 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑔 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) ) ) |
| 215 | 208 214 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫2 ‘ 𝐺 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫1 ‘ 𝑓 ) ) ) |
| 216 | 21 24 26 215 | lesubd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) |
| 217 | 216 | expr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) |
| 218 | 217 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) |
| 219 | 127 6 | fmptd | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 220 | 23 10 | resubcld | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 221 | 220 | rexrd | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) |
| 222 | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) ) | |
| 223 | 219 221 222 | syl2anc | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 224 | 218 223 | mpbird | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) |
| 225 | leaddsub | ⊢ ( ( ( ∫2 ‘ 𝐹 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ ∧ ( ∫2 ‘ 𝐻 ) ∈ ℝ ) → ( ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ≤ ( ∫2 ‘ 𝐻 ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) | |
| 226 | 9 10 23 225 | syl3anc | ⊢ ( 𝜑 → ( ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ≤ ( ∫2 ‘ 𝐻 ) ↔ ( ∫2 ‘ 𝐹 ) ≤ ( ( ∫2 ‘ 𝐻 ) − ( ∫2 ‘ 𝐺 ) ) ) ) |
| 227 | 224 226 | mpbird | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ≤ ( ∫2 ‘ 𝐻 ) ) |
| 228 | 17 19 20 227 | xrletrid | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐻 ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |