This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate version of itg1le . If F <_ G for almost all x , then S.1 F <_ S.1 G . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg10a.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| itg10a.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| itg10a.3 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| itg1lea.4 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| itg1lea.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) | ||
| Assertion | itg1lea | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | itg10a.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | itg10a.3 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 4 | itg1lea.4 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 5 | itg1lea.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) | |
| 6 | i1fsub | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ) → ( 𝐺 ∘f − 𝐹 ) ∈ dom ∫1 ) | |
| 7 | 4 1 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘f − 𝐹 ) ∈ dom ∫1 ) |
| 8 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 9 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 12 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 15 | 11 14 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 16 | 8 15 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 0 ≤ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 | 5 16 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 0 ≤ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | 10 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 19 | 13 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 20 | reex | ⊢ ℝ ∈ V | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 22 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 23 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 24 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 25 | 18 19 21 21 22 23 24 | ofval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ∘f − 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 | 8 25 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( ( 𝐺 ∘f − 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 | 17 26 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → 0 ≤ ( ( 𝐺 ∘f − 𝐹 ) ‘ 𝑥 ) ) |
| 28 | 7 2 3 27 | itg1ge0a | ⊢ ( 𝜑 → 0 ≤ ( ∫1 ‘ ( 𝐺 ∘f − 𝐹 ) ) ) |
| 29 | itg1sub | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝐺 ∘f − 𝐹 ) ) = ( ( ∫1 ‘ 𝐺 ) − ( ∫1 ‘ 𝐹 ) ) ) | |
| 30 | 4 1 29 | syl2anc | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐺 ∘f − 𝐹 ) ) = ( ( ∫1 ‘ 𝐺 ) − ( ∫1 ‘ 𝐹 ) ) ) |
| 31 | 28 30 | breqtrd | ⊢ ( 𝜑 → 0 ≤ ( ( ∫1 ‘ 𝐺 ) − ( ∫1 ‘ 𝐹 ) ) ) |
| 32 | itg1cl | ⊢ ( 𝐺 ∈ dom ∫1 → ( ∫1 ‘ 𝐺 ) ∈ ℝ ) | |
| 33 | 4 32 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) ∈ ℝ ) |
| 34 | itg1cl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) | |
| 35 | 1 34 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |
| 36 | 33 35 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ∫1 ‘ 𝐺 ) − ( ∫1 ‘ 𝐹 ) ) ↔ ( ∫1 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐺 ) ) ) |
| 37 | 31 36 | mpbid | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐺 ) ) |