This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | ||
| itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | ||
| itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | ||
| itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | ||
| itg2monolem2.7 | ⊢ ( 𝜑 → 𝑃 ∈ dom ∫1 ) | ||
| itg2monolem2.8 | ⊢ ( 𝜑 → 𝑃 ∘r ≤ 𝐺 ) | ||
| itg2monolem2.9 | ⊢ ( 𝜑 → ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) | ||
| Assertion | itg2monolem3 | ⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| 2 | itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | |
| 3 | itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 4 | itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 5 | itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | |
| 6 | itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | |
| 7 | itg2monolem2.7 | ⊢ ( 𝜑 → 𝑃 ∈ dom ∫1 ) | |
| 8 | itg2monolem2.8 | ⊢ ( 𝜑 → 𝑃 ∘r ≤ 𝐺 ) | |
| 9 | itg2monolem2.9 | ⊢ ( 𝜑 → ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | itg2monolem2 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 ∈ ℂ ) |
| 13 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑃 ∈ dom ∫1 ) |
| 14 | itg1cl | ⊢ ( 𝑃 ∈ dom ∫1 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ∫1 ‘ 𝑃 ) ∈ ℂ ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑡 ∈ ℝ+ ) | |
| 18 | 17 | rpred | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑡 ∈ ℝ ) |
| 19 | 11 18 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 + 𝑡 ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 + 𝑡 ) ∈ ℂ ) |
| 21 | 0red | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 ∈ ℝ ) | |
| 22 | 0xr | ⊢ 0 ∈ ℝ* | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 24 | fveq2 | ⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) | |
| 25 | 24 | feq1d | ⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 26 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 27 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 28 | 3 26 27 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 30 | 1nn | ⊢ 1 ∈ ℕ | |
| 31 | 30 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 32 | 25 29 31 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 33 | itg2cl | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) | |
| 34 | 32 33 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
| 35 | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) | |
| 36 | 28 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 37 | 36 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 38 | 37 | frnd | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 39 | supxrcl | ⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 41 | 6 40 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 42 | itg2ge0 | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 43 | 32 42 | syl | ⊢ ( 𝜑 → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 44 | 2fveq3 | ⊢ ( 𝑛 = 1 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 45 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 46 | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ V | |
| 47 | 44 45 46 | fvmpt | ⊢ ( 1 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 48 | 30 47 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) |
| 49 | 37 | ffnd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ) |
| 50 | fnfvelrn | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 51 | 49 30 50 | sylancl | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 52 | 48 51 | eqeltrrid | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 53 | supxrub | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) | |
| 54 | 38 52 53 | syl2anc | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 55 | 54 6 | breqtrrdi | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ 𝑆 ) |
| 56 | 23 34 41 43 55 | xrletrd | ⊢ ( 𝜑 → 0 ≤ 𝑆 ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 ≤ 𝑆 ) |
| 58 | 11 17 | ltaddrpd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 < ( 𝑆 + 𝑡 ) ) |
| 59 | 21 11 19 57 58 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( 𝑆 + 𝑡 ) ) |
| 60 | 59 | gt0ne0d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 + 𝑡 ) ≠ 0 ) |
| 61 | 12 16 20 60 | div23d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) = ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ) |
| 62 | 11 19 60 | redivcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ) |
| 63 | 62 15 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ) |
| 64 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 65 | ifcl | ⊢ ( ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ) | |
| 66 | 62 64 65 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ) |
| 67 | 66 15 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ) |
| 68 | max2 | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) | |
| 69 | 64 62 68 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 70 | 7 14 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 71 | 70 | rexrd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) |
| 72 | xrltnle | ⊢ ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) | |
| 73 | 41 71 72 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
| 74 | 9 73 | mpbird | ⊢ ( 𝜑 → 𝑆 < ( ∫1 ‘ 𝑃 ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 < ( ∫1 ‘ 𝑃 ) ) |
| 76 | 21 11 15 57 75 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( ∫1 ‘ 𝑃 ) ) |
| 77 | lemul1 | ⊢ ( ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ∧ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ∧ ( ( ∫1 ‘ 𝑃 ) ∈ ℝ ∧ 0 < ( ∫1 ‘ 𝑃 ) ) ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ↔ ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) ) | |
| 78 | 62 66 15 76 77 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ↔ ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) ) |
| 79 | 69 78 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) |
| 80 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 81 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 82 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 83 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 84 | 64 | a1i | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 1 / 2 ) ∈ ℝ ) |
| 85 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
| 86 | 85 | a1i | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( 1 / 2 ) ) |
| 87 | max1 | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( 𝑆 / ( 𝑆 + 𝑡 ) ) ∈ ℝ ) → ( 1 / 2 ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) | |
| 88 | 64 62 87 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 1 / 2 ) ≤ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 89 | 21 84 66 86 88 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ) |
| 90 | 20 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 + 𝑡 ) · 1 ) = ( 𝑆 + 𝑡 ) ) |
| 91 | 58 90 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑆 < ( ( 𝑆 + 𝑡 ) · 1 ) ) |
| 92 | 1red | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 1 ∈ ℝ ) | |
| 93 | ltdivmul | ⊢ ( ( 𝑆 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑆 + 𝑡 ) ∈ ℝ ∧ 0 < ( 𝑆 + 𝑡 ) ) ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ↔ 𝑆 < ( ( 𝑆 + 𝑡 ) · 1 ) ) ) | |
| 94 | 11 92 19 59 93 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ↔ 𝑆 < ( ( 𝑆 + 𝑡 ) · 1 ) ) ) |
| 95 | 91 94 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ) |
| 96 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 97 | breq1 | ⊢ ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) = if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ↔ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) | |
| 98 | breq1 | ⊢ ( ( 1 / 2 ) = if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) → ( ( 1 / 2 ) < 1 ↔ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) | |
| 99 | 97 98 | ifboth | ⊢ ( ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) < 1 ∧ ( 1 / 2 ) < 1 ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) |
| 100 | 95 96 99 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) |
| 101 | 1xr | ⊢ 1 ∈ ℝ* | |
| 102 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ( 0 (,) 1 ) ↔ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ∧ 0 < if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∧ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) ) | |
| 103 | 22 101 102 | mp2an | ⊢ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ( 0 (,) 1 ) ↔ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ℝ ∧ 0 < if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∧ if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) < 1 ) ) |
| 104 | 66 89 100 103 | syl3anbrc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) ∈ ( 0 (,) 1 ) ) |
| 105 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 𝑃 ∘r ≤ 𝐺 ) |
| 106 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑃 ‘ 𝑦 ) = ( 𝑃 ‘ 𝑥 ) ) | |
| 107 | 106 | oveq2d | ⊢ ( 𝑦 = 𝑥 → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) = ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ) |
| 108 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 109 | 107 108 | breq12d | ⊢ ( 𝑦 = 𝑥 → ( ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ↔ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 110 | 109 | cbvrabv | ⊢ { 𝑦 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) } = { 𝑥 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } |
| 111 | 110 | mpteq2i | ⊢ ( 𝑛 ∈ ℕ ↦ { 𝑦 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ ℝ ∣ ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( 𝑃 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 112 | 1 80 81 82 83 6 104 13 105 11 111 | itg2monolem1 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ 𝑆 ) |
| 113 | 63 67 11 79 112 | letrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 / ( 𝑆 + 𝑡 ) ) · ( ∫1 ‘ 𝑃 ) ) ≤ 𝑆 ) |
| 114 | 61 113 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) ≤ 𝑆 ) |
| 115 | 11 15 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ) |
| 116 | ledivmul2 | ⊢ ( ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( ( 𝑆 + 𝑡 ) ∈ ℝ ∧ 0 < ( 𝑆 + 𝑡 ) ) ) → ( ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) ≤ 𝑆 ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) | |
| 117 | 115 11 19 59 116 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) / ( 𝑆 + 𝑡 ) ) ≤ 𝑆 ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) |
| 118 | 114 117 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) |
| 119 | 66 15 89 76 | mulgt0d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < ( if ( ( 1 / 2 ) ≤ ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 𝑆 / ( 𝑆 + 𝑡 ) ) , ( 1 / 2 ) ) · ( ∫1 ‘ 𝑃 ) ) ) |
| 120 | 21 67 11 119 112 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → 0 < 𝑆 ) |
| 121 | lemul2 | ⊢ ( ( ( ∫1 ‘ 𝑃 ) ∈ ℝ ∧ ( 𝑆 + 𝑡 ) ∈ ℝ ∧ ( 𝑆 ∈ ℝ ∧ 0 < 𝑆 ) ) → ( ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) | |
| 122 | 15 19 11 120 121 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ↔ ( 𝑆 · ( ∫1 ‘ 𝑃 ) ) ≤ ( 𝑆 · ( 𝑆 + 𝑡 ) ) ) ) |
| 123 | 118 122 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ+ ) → ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) |
| 124 | 123 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑡 ∈ ℝ+ ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) |
| 125 | alrple | ⊢ ( ( ( ∫1 ‘ 𝑃 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ) → ( ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ↔ ∀ 𝑡 ∈ ℝ+ ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) ) | |
| 126 | 70 10 125 | syl2anc | ⊢ ( 𝜑 → ( ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ↔ ∀ 𝑡 ∈ ℝ+ ( ∫1 ‘ 𝑃 ) ≤ ( 𝑆 + 𝑡 ) ) ) |
| 127 | 124 126 | mpbird | ⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) |