This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative simple function using S.2 is the same as its value under S.1 . (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2itg1 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) = ( ∫1 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 2 | xrge0f | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 4 | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 6 | itg1cl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |
| 8 | 7 | rexrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ∈ ℝ* ) |
| 9 | itg1le | ⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ∧ 𝑔 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) | |
| 10 | 9 | 3expia | ⊢ ( ( 𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ) → ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) |
| 14 | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫1 ‘ 𝐹 ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐹 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) ) | |
| 15 | 3 8 14 | syl2anc | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐹 ) ↔ ∀ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑔 ) ≤ ( ∫1 ‘ 𝐹 ) ) ) ) |
| 16 | 13 15 | mpbird | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐹 ) ) |
| 17 | simpl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 ∈ dom ∫1 ) | |
| 18 | reex | ⊢ ℝ ∈ V | |
| 19 | 18 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
| 20 | leid | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ 𝑥 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ 𝑥 ) |
| 22 | 19 1 21 | caofref | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∘r ≤ 𝐹 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 ∘r ≤ 𝐹 ) |
| 24 | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 25 | 3 17 23 24 | syl3anc | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 26 | 5 8 16 25 | xrletrid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) = ( ∫1 ‘ 𝐹 ) ) |