This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isusgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isusgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| isusgrim.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| isusgrim.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | ||
| Assertion | isuspgrim0 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isusgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isusgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | isusgrim.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 4 | isusgrim.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 7 | 1 2 5 6 | isgrim | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) ) |
| 8 | 3 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 9 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 10 | 5 | uhgredgiedgb | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 11 | 9 10 | syl | ⊢ ( 𝐺 ∈ USPGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 12 | 8 11 | bitrid | ⊢ ( 𝐺 ∈ USPGraph → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 15 | 14 | biimpa | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 16 | 2fveq3 | ⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ) | |
| 17 | fveq2 | ⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) | |
| 18 | 17 | imaeq2d | ⊢ ( 𝑖 = 𝑘 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑖 = 𝑘 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 20 | 19 | rspcv | ⊢ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 22 | uspgruhgr | ⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph ) | |
| 23 | 6 | uhgrfun | ⊢ ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) ) |
| 24 | 22 23 | syl | ⊢ ( 𝐻 ∈ USPGraph → Fun ( iEdg ‘ 𝐻 ) ) |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 27 | f1of | ⊢ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) | |
| 28 | 27 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 30 | 6 | iedgedg | ⊢ ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 31 | 26 29 30 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 32 | 4 | eleq2i | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 33 | 31 32 | sylibr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ) |
| 34 | eleq1 | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) | |
| 35 | 33 34 | syl5ibcom | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 36 | 21 35 | syld | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 37 | 36 | ex | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
| 38 | 37 | com23 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
| 39 | 38 | impr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 41 | 40 | imp | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) |
| 42 | imaeq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) | |
| 43 | 42 | eleq1d | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹 “ 𝑒 ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 44 | 41 43 | syl5ibrcom | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 45 | 44 | rexlimdva | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 46 | 15 45 | mpd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
| 47 | 46 | ralrimiva | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
| 48 | 4 | eleq2i | ⊢ ( 𝑑 ∈ 𝐷 ↔ 𝑑 ∈ ( Edg ‘ 𝐻 ) ) |
| 49 | 6 | uhgredgiedgb | ⊢ ( 𝐻 ∈ UHGraph → ( 𝑑 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 50 | 22 49 | syl | ⊢ ( 𝐻 ∈ USPGraph → ( 𝑑 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 51 | 48 50 | bitrid | ⊢ ( 𝐻 ∈ USPGraph → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 52 | 51 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑑 ∈ 𝐷 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 54 | simprl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) | |
| 55 | f1ocnvdm | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 56 | 54 55 | sylan | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 57 | 2fveq3 | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) | |
| 58 | fveq2 | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) | |
| 59 | 58 | imaeq2d | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 60 | 57 59 | eqeq12d | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 61 | 60 | rspccv | ⊢ ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 62 | 61 | adantl | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 63 | 62 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 65 | f1ocnvfv2 | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) | |
| 66 | 54 65 | sylan | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
| 67 | 66 | fveqeq2d | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 68 | eqeq2 | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) | |
| 69 | 68 | adantl | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 70 | simpll1 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝐺 ∈ USPGraph ) | |
| 71 | 3 5 | uspgriedgedg | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ∃! 𝑒 ∈ 𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
| 72 | 70 56 71 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒 ∈ 𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
| 73 | eqcom | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ↔ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) | |
| 74 | 73 | reubii | ⊢ ( ∃! 𝑒 ∈ 𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ↔ ∃! 𝑒 ∈ 𝐸 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
| 75 | 72 74 | sylibr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒 ∈ 𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) |
| 76 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) | |
| 77 | 76 | ad4antlr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 78 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 79 | 78 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐺 ∈ UPGraph ) |
| 80 | 79 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → 𝐺 ∈ UPGraph ) |
| 81 | 80 56 | jca | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐺 ∈ UPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 82 | 81 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝐺 ∈ UPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 83 | 1 5 | upgrss | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
| 84 | 82 83 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
| 85 | 8 | biimpi | ⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 86 | edgupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) ) | |
| 87 | 80 85 86 | syl2an | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) ) |
| 88 | 87 | simp1d | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 89 | 88 | elpwid | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) |
| 90 | 89 1 | sseqtrrdi | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
| 91 | f1imaeq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ∧ 𝑒 ⊆ 𝑉 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) ) | |
| 92 | 77 84 90 91 | syl12anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) ) |
| 93 | 92 | reubidva | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑒 ) ) |
| 94 | 75 93 | mpbird | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) |
| 95 | 94 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) |
| 96 | eqeq1 | ⊢ ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) ) | |
| 97 | 96 | reubidv | ⊢ ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) ) |
| 98 | 97 | adantl | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ 𝑒 ) ) ) |
| 99 | 95 98 | mpbird | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ∧ 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
| 100 | 99 | ex | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( 𝑑 = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 101 | 69 100 | sylbid | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 102 | 101 | ex | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 103 | 67 102 | sylbid | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 104 | 64 103 | syld | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 105 | 56 104 | mpd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 106 | 105 | rexlimdva | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝑑 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 107 | 53 106 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 108 | 107 | ralrimiv | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
| 109 | imaeq2 | ⊢ ( 𝑥 = 𝑒 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑒 ) ) | |
| 110 | 109 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) |
| 111 | 110 | f1ompt | ⊢ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ∧ ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 112 | 47 108 111 | sylanbrc | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |
| 113 | 112 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
| 114 | 113 | exlimdv | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
| 115 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 116 | 115 | dmex | ⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 117 | 116 | mptex | ⊢ ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ∈ V |
| 118 | 117 | a1i | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ∈ V ) |
| 119 | eqid | ⊢ ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) | |
| 120 | 1 2 3 4 5 6 110 119 | isuspgrim0lem | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 121 | f1oeq1 | ⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) | |
| 122 | fveq1 | ⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( 𝑗 ‘ 𝑖 ) = ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) | |
| 123 | 122 | fveqeq2d | ⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 124 | 123 | ralbidv | ⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 125 | 121 124 | anbi12d | ⊢ ( 𝑗 = ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑒 ∈ dom ( iEdg ‘ 𝐺 ) ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑒 ) ) ) ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 126 | 118 120 125 | spcedv | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 127 | 126 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 128 | 114 127 | impbid | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
| 129 | f1oeq1 | ⊢ ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) → ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) | |
| 130 | 110 129 | mp1i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
| 131 | 128 130 | bitrd | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) |
| 132 | 131 | pm5.32da | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |
| 133 | 7 132 | bitrd | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) ) ) |