This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isuspgr | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 4 | f1f | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 5 | 3 4 | biimtrdi | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 6 | 1 2 | isupgr | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ UPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 7 | 5 6 | sylibrd | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) ) |
| 8 | 7 | pm2.43i | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |