This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isusgrim.v | |- V = ( Vtx ` G ) |
|
| isusgrim.w | |- W = ( Vtx ` H ) |
||
| isusgrim.e | |- E = ( Edg ` G ) |
||
| isusgrim.d | |- D = ( Edg ` H ) |
||
| Assertion | isuspgrim0 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( F e. ( G GraphIso H ) <-> ( F : V -1-1-onto-> W /\ ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isusgrim.v | |- V = ( Vtx ` G ) |
|
| 2 | isusgrim.w | |- W = ( Vtx ` H ) |
|
| 3 | isusgrim.e | |- E = ( Edg ` G ) |
|
| 4 | isusgrim.d | |- D = ( Edg ` H ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 7 | 1 2 5 6 | isgrim | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( F e. ( G GraphIso H ) <-> ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) ) |
| 8 | 3 | eleq2i | |- ( e e. E <-> e e. ( Edg ` G ) ) |
| 9 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 10 | 5 | uhgredgiedgb | |- ( G e. UHGraph -> ( e e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
| 11 | 9 10 | syl | |- ( G e. USPGraph -> ( e e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
| 12 | 8 11 | bitrid | |- ( G e. USPGraph -> ( e e. E <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( e e. E <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
| 14 | 13 | ad2antrr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( e e. E <-> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) ) |
| 15 | 14 | biimpa | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) ) |
| 16 | 2fveq3 | |- ( i = k -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) ) |
|
| 17 | fveq2 | |- ( i = k -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` k ) ) |
|
| 18 | 17 | imaeq2d | |- ( i = k -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( i = k -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 20 | 19 | rspcv | |- ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 21 | 20 | adantl | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 22 | uspgruhgr | |- ( H e. USPGraph -> H e. UHGraph ) |
|
| 23 | 6 | uhgrfun | |- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
| 24 | 22 23 | syl | |- ( H e. USPGraph -> Fun ( iEdg ` H ) ) |
| 25 | 24 | 3ad2ant2 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> Fun ( iEdg ` H ) ) |
| 26 | 25 | ad3antrrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> Fun ( iEdg ` H ) ) |
| 27 | f1of | |- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
|
| 28 | 27 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 29 | 28 | ffvelcdmda | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( j ` k ) e. dom ( iEdg ` H ) ) |
| 30 | 6 | iedgedg | |- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 31 | 26 29 30 | syl2anc | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 32 | 4 | eleq2i | |- ( ( ( iEdg ` H ) ` ( j ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 33 | 31 32 | sylibr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) |
| 34 | eleq1 | |- ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
|
| 35 | 33 34 | syl5ibcom | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 36 | 21 35 | syld | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 37 | 36 | ex | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 38 | 37 | com23 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( k e. dom ( iEdg ` G ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 39 | 38 | impr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( k e. dom ( iEdg ` G ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 40 | 39 | adantr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> ( k e. dom ( iEdg ` G ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 41 | 40 | imp | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) /\ k e. dom ( iEdg ` G ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) |
| 42 | imaeq2 | |- ( e = ( ( iEdg ` G ) ` k ) -> ( F " e ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
|
| 43 | 42 | eleq1d | |- ( e = ( ( iEdg ` G ) ` k ) -> ( ( F " e ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 44 | 41 43 | syl5ibrcom | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) /\ k e. dom ( iEdg ` G ) ) -> ( e = ( ( iEdg ` G ) ` k ) -> ( F " e ) e. D ) ) |
| 45 | 44 | rexlimdva | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> ( E. k e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` k ) -> ( F " e ) e. D ) ) |
| 46 | 15 45 | mpd | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ e e. E ) -> ( F " e ) e. D ) |
| 47 | 46 | ralrimiva | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> A. e e. E ( F " e ) e. D ) |
| 48 | 4 | eleq2i | |- ( d e. D <-> d e. ( Edg ` H ) ) |
| 49 | 6 | uhgredgiedgb | |- ( H e. UHGraph -> ( d e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
| 50 | 22 49 | syl | |- ( H e. USPGraph -> ( d e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
| 51 | 48 50 | bitrid | |- ( H e. USPGraph -> ( d e. D <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
| 52 | 51 | 3ad2ant2 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( d e. D <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
| 53 | 52 | ad2antrr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( d e. D <-> E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) ) ) |
| 54 | simprl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
|
| 55 | f1ocnvdm | |- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> ( `' j ` k ) e. dom ( iEdg ` G ) ) |
|
| 56 | 54 55 | sylan | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( `' j ` k ) e. dom ( iEdg ` G ) ) |
| 57 | 2fveq3 | |- ( i = ( `' j ` k ) -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) ) |
|
| 58 | fveq2 | |- ( i = ( `' j ` k ) -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
|
| 59 | 58 | imaeq2d | |- ( i = ( `' j ` k ) -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 60 | 57 59 | eqeq12d | |- ( i = ( `' j ` k ) -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 61 | 60 | rspccv | |- ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 62 | 61 | adantl | |- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 63 | 62 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 64 | 63 | adantr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 65 | f1ocnvfv2 | |- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> ( j ` ( `' j ` k ) ) = k ) |
|
| 66 | 54 65 | sylan | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( j ` ( `' j ` k ) ) = k ) |
| 67 | 66 | fveqeq2d | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) <-> ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 68 | eqeq2 | |- ( ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) <-> d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
|
| 69 | 68 | adantl | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) <-> d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 70 | simpll1 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> G e. USPGraph ) |
|
| 71 | 3 5 | uspgriedgedg | |- ( ( G e. USPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> E! e e. E e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
| 72 | 70 56 71 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> E! e e. E e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
| 73 | eqcom | |- ( ( ( iEdg ` G ) ` ( `' j ` k ) ) = e <-> e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
|
| 74 | 73 | reubii | |- ( E! e e. E ( ( iEdg ` G ) ` ( `' j ` k ) ) = e <-> E! e e. E e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
| 75 | 72 74 | sylibr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> E! e e. E ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) |
| 76 | f1of1 | |- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
|
| 77 | 76 | ad4antlr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> F : V -1-1-> W ) |
| 78 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 79 | 78 | 3ad2ant1 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> G e. UPGraph ) |
| 80 | 79 | ad3antrrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> G e. UPGraph ) |
| 81 | 80 56 | jca | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( G e. UPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) ) |
| 82 | 81 | adantr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( G e. UPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) ) |
| 83 | 1 5 | upgrss | |- ( ( G e. UPGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V ) |
| 84 | 82 83 | syl | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V ) |
| 85 | 8 | biimpi | |- ( e e. E -> e e. ( Edg ` G ) ) |
| 86 | edgupgr | |- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) ) |
|
| 87 | 80 85 86 | syl2an | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) ) |
| 88 | 87 | simp1d | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> e e. ~P ( Vtx ` G ) ) |
| 89 | 88 | elpwid | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> e C_ ( Vtx ` G ) ) |
| 90 | 89 1 | sseqtrrdi | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> e C_ V ) |
| 91 | f1imaeq | |- ( ( F : V -1-1-> W /\ ( ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V /\ e C_ V ) ) -> ( ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) <-> ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) ) |
|
| 92 | 77 84 90 91 | syl12anc | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ e e. E ) -> ( ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) <-> ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) ) |
| 93 | 92 | reubidva | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) <-> E! e e. E ( ( iEdg ` G ) ` ( `' j ` k ) ) = e ) ) |
| 94 | 75 93 | mpbird | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) |
| 95 | 94 | ad2antrr | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) /\ d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) |
| 96 | eqeq1 | |- ( d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( F " e ) <-> ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) ) |
|
| 97 | 96 | reubidv | |- ( d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( E! e e. E d = ( F " e ) <-> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) ) |
| 98 | 97 | adantl | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) /\ d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( E! e e. E d = ( F " e ) <-> E! e e. E ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) = ( F " e ) ) ) |
| 99 | 95 98 | mpbird | |- ( ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) /\ d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> E! e e. E d = ( F " e ) ) |
| 100 | 99 | ex | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( d = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> E! e e. E d = ( F " e ) ) ) |
| 101 | 69 100 | sylbid | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) |
| 102 | 101 | ex | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) ) |
| 103 | 67 102 | sylbid | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) ) |
| 104 | 64 103 | syld | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) ) |
| 105 | 56 104 | mpd | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ k e. dom ( iEdg ` H ) ) -> ( d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) |
| 106 | 105 | rexlimdva | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( E. k e. dom ( iEdg ` H ) d = ( ( iEdg ` H ) ` k ) -> E! e e. E d = ( F " e ) ) ) |
| 107 | 53 106 | sylbid | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( d e. D -> E! e e. E d = ( F " e ) ) ) |
| 108 | 107 | ralrimiv | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> A. d e. D E! e e. E d = ( F " e ) ) |
| 109 | imaeq2 | |- ( x = e -> ( F " x ) = ( F " e ) ) |
|
| 110 | 109 | cbvmptv | |- ( x e. E |-> ( F " x ) ) = ( e e. E |-> ( F " e ) ) |
| 111 | 110 | f1ompt | |- ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D <-> ( A. e e. E ( F " e ) e. D /\ A. d e. D E! e e. E d = ( F " e ) ) ) |
| 112 | 47 108 111 | sylanbrc | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) |
| 113 | 112 | ex | |- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) ) |
| 114 | 113 | exlimdv | |- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) ) |
| 115 | fvex | |- ( iEdg ` G ) e. _V |
|
| 116 | 115 | dmex | |- dom ( iEdg ` G ) e. _V |
| 117 | 116 | mptex | |- ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) e. _V |
| 118 | 117 | a1i | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) -> ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) e. _V ) |
| 119 | eqid | |- ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) |
|
| 120 | 1 2 3 4 5 6 110 119 | isuspgrim0lem | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) -> ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
| 121 | f1oeq1 | |- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
|
| 122 | fveq1 | |- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( j ` i ) = ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) |
|
| 123 | 122 | fveqeq2d | |- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
| 124 | 123 | ralbidv | |- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
| 125 | 121 124 | anbi12d | |- ( j = ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) <-> ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( e e. dom ( iEdg ` G ) |-> ( `' ( iEdg ` H ) ` ( ( x e. E |-> ( F " x ) ) ` ( ( iEdg ` G ) ` e ) ) ) ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 126 | 118 120 125 | spcedv | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) -> E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
| 127 | 126 | ex | |- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D -> E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 128 | 114 127 | impbid | |- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) <-> ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D ) ) |
| 129 | f1oeq1 | |- ( ( x e. E |-> ( F " x ) ) = ( e e. E |-> ( F " e ) ) -> ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D <-> ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) |
|
| 130 | 110 129 | mp1i | |- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( ( x e. E |-> ( F " x ) ) : E -1-1-onto-> D <-> ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) |
| 131 | 128 130 | bitrd | |- ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) <-> ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) |
| 132 | 131 | pm5.32da | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) <-> ( F : V -1-1-onto-> W /\ ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) ) |
| 133 | 7 132 | bitrd | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( F e. ( G GraphIso H ) <-> ( F : V -1-1-onto-> W /\ ( e e. E |-> ( F " e ) ) : E -1-1-onto-> D ) ) ) |