This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | edgupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | a1i | ⊢ ( 𝐺 ∈ UPGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 3 | 2 | eleq2d | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ 𝐸 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | 4 5 | upgrf | ⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 7 | 6 | frnd | ⊢ ( 𝐺 ∈ UPGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 8 | 7 | sseld | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐸 ∈ ran ( iEdg ‘ 𝐺 ) → 𝐸 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝐸 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐸 ) ) | |
| 10 | 9 | breq1d | ⊢ ( 𝑥 = 𝐸 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) |
| 11 | 10 | elrab | ⊢ ( 𝐸 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝐸 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) |
| 12 | eldifsn | ⊢ ( 𝐸 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ) ) | |
| 13 | 12 | biimpi | ⊢ ( 𝐸 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ) ) |
| 14 | 13 | anim1i | ⊢ ( ( 𝐸 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) → ( ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ) ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) |
| 15 | df-3an | ⊢ ( ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ↔ ( ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ) ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝐸 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) |
| 17 | 16 | a1i | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐸 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) ) |
| 18 | 11 17 | biimtrid | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐸 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) ) |
| 19 | 8 18 | syld | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐸 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) ) |
| 20 | 3 19 | sylbid | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝐸 ≠ ∅ ∧ ( ♯ ‘ 𝐸 ) ≤ 2 ) ) |