This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 29-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isupgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isupgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | upgrss | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐹 ) ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isupgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | ssrab2 | ⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ⊆ ( 𝒫 𝑉 ∖ { ∅ } ) | |
| 4 | difss | ⊢ ( 𝒫 𝑉 ∖ { ∅ } ) ⊆ 𝒫 𝑉 | |
| 5 | 3 4 | sstri | ⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ⊆ 𝒫 𝑉 |
| 6 | 1 2 | upgrf | ⊢ ( 𝐺 ∈ UPGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐹 ) ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 8 | 5 7 | sselid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐹 ) ∈ 𝒫 𝑉 ) |
| 9 | 8 | elpwid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐹 ) ⊆ 𝑉 ) |