This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isuspgrim . (Contributed by AV, 27-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isusgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isusgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| isusgrim.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| isusgrim.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | ||
| Assertion | isuspgrimlem | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isusgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isusgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | isusgrim.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 4 | isusgrim.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | |
| 5 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UPGraph ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐺 ∈ UPGraph ) |
| 8 | 7 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → 𝐺 ∈ UPGraph ) |
| 9 | 1 3 | upgredg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑒 = { 𝑎 , 𝑏 } ) |
| 10 | 8 9 | sylan | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑒 = { 𝑎 , 𝑏 } ) |
| 11 | preq12 | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) | |
| 12 | 11 | eleq1d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 17 | 14 16 | preq12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
| 18 | 17 | eleq1d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) |
| 19 | 12 18 | bibi12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 20 | 19 | rspc2gv | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 21 | 20 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ) ) |
| 24 | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) | |
| 25 | 24 | ad3antlr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
| 26 | simprl | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ 𝑉 ) | |
| 27 | simpr | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) | |
| 28 | 27 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) |
| 29 | fnimapr | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) | |
| 30 | 25 26 28 29 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑎 , 𝑏 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ) |
| 31 | 30 | eqcomd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } = ( 𝐹 “ { 𝑎 , 𝑏 } ) ) |
| 32 | 31 | eleq1d | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) } ∈ 𝐷 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 33 | 23 32 | bitrd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 35 | 34 | biimpd | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 36 | eleq1 | ⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) | |
| 37 | imaeq2 | ⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) = ( 𝐹 “ { 𝑎 , 𝑏 } ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝐹 “ 𝑒 ) ∈ 𝐷 ↔ ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) |
| 39 | 36 38 | imbi12d | ⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) ) |
| 40 | 39 | adantl | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( 𝐹 “ { 𝑎 , 𝑏 } ) ∈ 𝐷 ) ) ) |
| 41 | 35 40 | mpbird | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 42 | 41 | exp31 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) ) |
| 43 | 42 | com23 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) ) |
| 44 | 43 | com24 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) ) |
| 45 | 44 | imp | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) ) |
| 46 | 45 | rexlimdvv | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑒 = { 𝑎 , 𝑏 } → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 47 | 10 46 | mpd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
| 48 | 47 | ex | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 → ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) ) |
| 49 | 48 | ralrimiv | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ) |
| 50 | uspgrupgr | ⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph ) | |
| 51 | 50 | ad3antlr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → 𝐻 ∈ UPGraph ) |
| 52 | 2 4 | upgredg | ⊢ ( ( 𝐻 ∈ UPGraph ∧ 𝑑 ∈ 𝐷 ) → ∃ 𝑎 ∈ 𝑊 ∃ 𝑏 ∈ 𝑊 𝑑 = { 𝑎 , 𝑏 } ) |
| 53 | 51 52 | sylan | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ∃ 𝑎 ∈ 𝑊 ∃ 𝑏 ∈ 𝑊 𝑑 = { 𝑎 , 𝑏 } ) |
| 54 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –onto→ 𝑊 ) | |
| 55 | foelrn | ⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑎 ∈ 𝑊 ) → ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ) | |
| 56 | 55 | ex | ⊢ ( 𝐹 : 𝑉 –onto→ 𝑊 → ( 𝑎 ∈ 𝑊 → ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) |
| 57 | foelrn | ⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) | |
| 58 | 57 | ex | ⊢ ( 𝐹 : 𝑉 –onto→ 𝑊 → ( 𝑏 ∈ 𝑊 → ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) |
| 59 | 56 58 | anim12d | ⊢ ( 𝐹 : 𝑉 –onto→ 𝑊 → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 60 | 54 59 | syl | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 61 | 60 | adantl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 62 | 61 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 63 | 62 | imp | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) ) |
| 64 | preq12 | ⊢ ( ( 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑛 ) ) → { 𝑎 , 𝑏 } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) | |
| 65 | 64 | eqeq2d | ⊢ ( ( 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑛 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) ) |
| 66 | 65 | ancoms | ⊢ ( ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) ) |
| 67 | 66 | adantl | ⊢ ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) ∧ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑑 = { 𝑎 , 𝑏 } ↔ 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) ) |
| 68 | preq12 | ⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → { 𝑥 , 𝑦 } = { 𝑚 , 𝑛 } ) | |
| 69 | 68 | eleq1d | ⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { 𝑚 , 𝑛 } ∈ 𝐸 ) ) |
| 70 | fveq2 | ⊢ ( 𝑥 = 𝑚 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 71 | 70 | adantr | ⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 72 | fveq2 | ⊢ ( 𝑦 = 𝑛 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 73 | 72 | adantl | ⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 74 | 71 73 | preq12d | ⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 75 | 74 | eleq1d | ⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) |
| 76 | 69 75 | bibi12d | ⊢ ( ( 𝑥 = 𝑚 ∧ 𝑦 = 𝑛 ) → ( ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ↔ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) ) |
| 77 | 76 | rspc2gv | ⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) ) |
| 78 | 77 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) ) |
| 79 | 24 | adantl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 Fn 𝑉 ) |
| 80 | 79 | anim1i | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 81 | 3anass | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) | |
| 82 | 80 81 | sylibr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
| 83 | fnimapr | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) | |
| 84 | 82 83 | syl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑚 , 𝑛 } ) = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 85 | 84 | eqcomd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) ) |
| 86 | simpr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) | |
| 87 | simpr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → { 𝑚 , 𝑛 } ∈ 𝐸 ) | |
| 88 | reueq | ⊢ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑚 , 𝑛 } ) | |
| 89 | 87 88 | sylib | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑚 , 𝑛 } ) |
| 90 | eqcom | ⊢ ( { 𝑚 , 𝑛 } = 𝑒 ↔ 𝑒 = { 𝑚 , 𝑛 } ) | |
| 91 | 90 | reubii | ⊢ ( ∃! 𝑒 ∈ 𝐸 { 𝑚 , 𝑛 } = 𝑒 ↔ ∃! 𝑒 ∈ 𝐸 𝑒 = { 𝑚 , 𝑛 } ) |
| 92 | 89 91 | sylibr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒 ∈ 𝐸 { 𝑚 , 𝑛 } = 𝑒 ) |
| 93 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) | |
| 94 | 93 | adantl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 95 | 94 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 96 | prssi | ⊢ ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → { 𝑚 , 𝑛 } ⊆ 𝑉 ) | |
| 97 | 96 | ad3antlr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → { 𝑚 , 𝑛 } ⊆ 𝑉 ) |
| 98 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 99 | 98 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → 𝐺 ∈ UHGraph ) |
| 100 | 99 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → 𝐺 ∈ UHGraph ) |
| 101 | 3 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 102 | 101 | biimpi | ⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 103 | edguhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) | |
| 104 | 1 | pweqi | ⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 ) |
| 105 | 103 104 | eleqtrrdi | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 𝑉 ) |
| 106 | 100 102 105 | syl2an | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝒫 𝑉 ) |
| 107 | 106 | elpwid | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
| 108 | f1imaeq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( { 𝑚 , 𝑛 } ⊆ 𝑉 ∧ 𝑒 ⊆ 𝑉 ) ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ↔ { 𝑚 , 𝑛 } = 𝑒 ) ) | |
| 109 | 95 97 107 108 | syl12anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 ∈ 𝐸 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ↔ { 𝑚 , 𝑛 } = 𝑒 ) ) |
| 110 | 109 | reubidva | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ( ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 { 𝑚 , 𝑛 } = 𝑒 ) ) |
| 111 | 92 110 | mpbird | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ { 𝑚 , 𝑛 } ∈ 𝐸 ) → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) |
| 112 | 111 | ex | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 113 | 112 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( { 𝑚 , 𝑛 } ∈ 𝐸 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 114 | 86 113 | sylbird | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ∧ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 115 | 114 | ex | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) ) |
| 116 | eleq1 | ⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) | |
| 117 | 116 | bibi2d | ⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ↔ ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) ) ) |
| 118 | eqeq1 | ⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) | |
| 119 | 118 | reubidv | ⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) |
| 120 | 116 119 | imbi12d | ⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ↔ ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) ) |
| 121 | 117 120 | imbi12d | ⊢ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ↔ ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 ) → ( ( 𝐹 “ { 𝑚 , 𝑛 } ) ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 ( 𝐹 “ { 𝑚 , 𝑛 } ) = ( 𝐹 “ 𝑒 ) ) ) ) ) |
| 122 | 115 121 | syl5ibrcom | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ { 𝑚 , 𝑛 } ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) ) |
| 123 | 85 122 | mpd | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( { 𝑚 , 𝑛 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 124 | 78 123 | syld | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 125 | 124 | impancom | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 126 | 125 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 127 | 126 | impl | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) |
| 128 | eleq1 | ⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 ∈ 𝐷 ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 ) ) | |
| 129 | eqeq1 | ⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 = ( 𝐹 “ 𝑒 ) ↔ { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) | |
| 130 | 129 | reubidv | ⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ↔ ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) |
| 131 | 128 130 | imbi12d | ⊢ ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ↔ ( { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } = ( 𝐹 “ 𝑒 ) ) ) ) |
| 132 | 127 131 | syl5ibrcom | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 133 | 132 | adantr | ⊢ ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) ∧ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑑 = { ( 𝐹 ‘ 𝑚 ) , ( 𝐹 ‘ 𝑛 ) } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 134 | 67 133 | sylbid | ⊢ ( ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) ∧ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑎 = ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 135 | 134 | exp32 | ⊢ ( ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) ∧ 𝑛 ∈ 𝑉 ) → ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 136 | 135 | rexlimdva | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 137 | 136 | com23 | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) ∧ 𝑚 ∈ 𝑉 ) → ( 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 138 | 137 | rexlimdva | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) → ( ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) ) |
| 139 | 138 | impd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( ( ∃ 𝑚 ∈ 𝑉 𝑎 = ( 𝐹 ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ 𝑉 𝑏 = ( 𝐹 ‘ 𝑛 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) ) |
| 140 | 63 139 | mpd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑑 = { 𝑎 , 𝑏 } → ( 𝑑 ∈ 𝐷 → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 141 | 140 | com23 | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) ) → ( 𝑑 ∈ 𝐷 → ( 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 142 | 141 | impancom | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊 ) → ( 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) ) |
| 143 | 142 | rexlimdvv | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ( ∃ 𝑎 ∈ 𝑊 ∃ 𝑏 ∈ 𝑊 𝑑 = { 𝑎 , 𝑏 } → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 144 | 53 143 | mpd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) ∧ 𝑑 ∈ 𝐷 ) → ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
| 145 | 144 | ralrimiva | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) |
| 146 | eqid | ⊢ ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) = ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) | |
| 147 | 146 | f1ompt | ⊢ ( ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ↔ ( ∀ 𝑒 ∈ 𝐸 ( 𝐹 “ 𝑒 ) ∈ 𝐷 ∧ ∀ 𝑑 ∈ 𝐷 ∃! 𝑒 ∈ 𝐸 𝑑 = ( 𝐹 “ 𝑒 ) ) ) |
| 148 | 49 145 147 | sylanbrc | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( { 𝑥 , 𝑦 } ∈ 𝐸 ↔ { ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) } ∈ 𝐷 ) ) → ( 𝑒 ∈ 𝐸 ↦ ( 𝐹 “ 𝑒 ) ) : 𝐸 –1-1-onto→ 𝐷 ) |