This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isusgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isusgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| isusgrim.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| isusgrim.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | ||
| isuspgrim0lem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| isuspgrim0lem.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| isuspgrim0lem.m | ⊢ 𝑀 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) | ||
| isuspgrim0lem.n | ⊢ 𝑁 = ( 𝑥 ∈ dom 𝐼 ↦ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) | ||
| Assertion | isuspgrim0lem | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ( 𝑁 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isusgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isusgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | isusgrim.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 4 | isusgrim.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | |
| 5 | isuspgrim0lem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 6 | isuspgrim0lem.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 7 | isuspgrim0lem.m | ⊢ 𝑀 = ( 𝑥 ∈ 𝐸 ↦ ( 𝐹 “ 𝑥 ) ) | |
| 8 | isuspgrim0lem.n | ⊢ 𝑁 = ( 𝑥 ∈ dom 𝐼 ↦ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) | |
| 9 | 6 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 12 | f1of | ⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 → 𝑀 : 𝐸 ⟶ 𝐷 ) | |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 14 | 13 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 15 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 16 | 5 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 17 | 15 16 | syl | ⊢ ( 𝐺 ∈ USPGraph → Fun 𝐼 ) |
| 18 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 19 | 5 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 20 | 19 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 21 | 3 18 20 | 3eqtri | ⊢ 𝐸 = ran 𝐼 |
| 22 | feq3 | ⊢ ( 𝐸 = ran 𝐼 → ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ran 𝐼 ) ) | |
| 23 | 21 22 | ax-mp | ⊢ ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ran 𝐼 ) |
| 24 | fdmrn | ⊢ ( Fun 𝐼 ↔ 𝐼 : dom 𝐼 ⟶ ran 𝐼 ) | |
| 25 | 23 24 | bitr4i | ⊢ ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ Fun 𝐼 ) |
| 26 | 17 25 | sylibr | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) |
| 30 | 14 29 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ 𝐷 ) |
| 31 | 30 4 | eleqtrdi | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 32 | f1ocnvdm | ⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) | |
| 33 | 11 31 32 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) |
| 34 | 33 | ralrimiva | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ∀ 𝑥 ∈ dom 𝐼 ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) |
| 35 | 2fveq3 | ⊢ ( 𝑥 = ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) ) | |
| 36 | 35 | eqeq2d | ⊢ ( 𝑥 = ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) → ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) ) ) |
| 37 | 5 | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 38 | 37 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 40 | f1oeq2 | ⊢ ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ↔ 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) ) | |
| 41 | 3 40 | ax-mp | ⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ↔ 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) |
| 42 | 41 | biimpi | ⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 → 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) |
| 43 | 42 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ) |
| 44 | f1oeq3 | ⊢ ( 𝐷 = ( Edg ‘ 𝐻 ) → ( 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 ↔ 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) ) | |
| 45 | 4 44 | ax-mp | ⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 ↔ 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 46 | 11 45 | sylibr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 ) |
| 47 | f1of | ⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ 𝐷 → 𝐽 : dom 𝐽 ⟶ 𝐷 ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐽 : dom 𝐽 ⟶ 𝐷 ) |
| 49 | 48 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) |
| 50 | f1ocnvdm | ⊢ ( ( 𝑀 : ( Edg ‘ 𝐺 ) –1-1-onto→ 𝐷 ∧ ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) | |
| 51 | 43 49 50 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 52 | f1ocnvdm | ⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) → ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ∈ dom 𝐼 ) | |
| 53 | 39 51 52 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ∈ dom 𝐼 ) |
| 54 | simpll1 | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐺 ∈ USPGraph ) | |
| 55 | 54 37 | syl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 56 | simpr | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) | |
| 57 | f1ocnvdm | ⊢ ( ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ∧ ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ 𝐸 ) | |
| 58 | 56 49 57 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ 𝐸 ) |
| 59 | 58 3 | eleqtrdi | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 60 | f1ocnvfv2 | ⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ∧ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) = ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) | |
| 61 | 55 59 60 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) = ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) |
| 62 | 61 | fveq2d | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) |
| 63 | f1ocnvfv2 | ⊢ ( ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 ∧ ( 𝐽 ‘ 𝑖 ) ∈ 𝐷 ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) = ( 𝐽 ‘ 𝑖 ) ) | |
| 64 | 56 49 63 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) = ( 𝐽 ‘ 𝑖 ) ) |
| 65 | 62 64 | eqtr2d | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ◡ 𝑀 ‘ ( 𝐽 ‘ 𝑖 ) ) ) ) ) ) |
| 66 | 36 53 65 | rspcedvdw | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃ 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 67 | eqtr2 | ⊢ ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) | |
| 68 | f1of1 | ⊢ ( 𝑀 : 𝐸 –1-1-onto→ 𝐷 → 𝑀 : 𝐸 –1-1→ 𝐷 ) | |
| 69 | 68 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑀 : 𝐸 –1-1→ 𝐷 ) |
| 70 | 69 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝑀 : 𝐸 –1-1→ 𝐷 ) |
| 71 | 5 | iedgedg | ⊢ ( ( Fun 𝐼 ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 72 | 17 71 | sylan | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 73 | 72 3 | eleqtrrdi | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) |
| 74 | 73 | ex | ⊢ ( 𝐺 ∈ USPGraph → ( 𝑥 ∈ dom 𝐼 → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) ) |
| 75 | 5 | iedgedg | ⊢ ( ( Fun 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑦 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 76 | 17 75 | sylan | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑦 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 77 | 76 3 | eleqtrrdi | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) |
| 78 | 77 | ex | ⊢ ( 𝐺 ∈ USPGraph → ( 𝑦 ∈ dom 𝐼 → ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) |
| 79 | 74 78 | anim12d | ⊢ ( 𝐺 ∈ USPGraph → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) ) |
| 80 | 79 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) ) |
| 81 | 80 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) ) |
| 82 | 81 | imp | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) |
| 83 | f1fveq | ⊢ ( ( 𝑀 : 𝐸 –1-1→ 𝐷 ∧ ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐸 ) ) → ( ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ↔ ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ) ) | |
| 84 | 70 82 83 | syl2an2r | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ↔ ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ) ) |
| 85 | f1of1 | ⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) | |
| 86 | 37 85 | syl | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 87 | 86 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 88 | 87 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 89 | f1veqaeq | ⊢ ( ( 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) | |
| 90 | 88 89 | sylan | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 91 | 84 90 | sylbid | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 92 | 67 91 | syl5 | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ ( 𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼 ) ) → ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
| 93 | 92 | ralrimivva | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
| 94 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) | |
| 95 | 94 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 96 | 95 | reu4 | ⊢ ( ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 97 | 66 93 96 | sylanbrc | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 98 | 10 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 99 | 13 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 100 | 27 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 101 | 100 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐸 ) |
| 102 | 99 101 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ 𝐷 ) |
| 103 | 102 4 | eleqtrdi | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 104 | f1ocnvfv2 | ⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) | |
| 105 | 98 103 104 | syl2an2r | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 106 | 105 | eqeq2d | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 107 | 106 | reubidva | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 108 | 97 107 | mpbird | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) |
| 109 | 11 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 110 | f1of1 | ⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) | |
| 111 | 109 110 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) |
| 112 | simplr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → 𝑖 ∈ dom 𝐽 ) | |
| 113 | 33 | adantlr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) |
| 114 | f1fveq | ⊢ ( ( 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ∧ ( 𝑖 ∈ dom 𝐽 ∧ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) ) → ( ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ↔ 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) | |
| 115 | 114 | bicomd | ⊢ ( ( 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ∧ ( 𝑖 ∈ dom 𝐽 ∧ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ) ) → ( 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) ) |
| 116 | 111 112 113 115 | syl12anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ↔ ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) ) |
| 117 | 116 | reubidva | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ( ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐽 ‘ 𝑖 ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) ) |
| 118 | 108 117 | mpbird | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐽 ) → ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 119 | 118 | ralrimiva | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ∀ 𝑖 ∈ dom 𝐽 ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) |
| 120 | 8 | f1ompt | ⊢ ( 𝑁 : dom 𝐼 –1-1-onto→ dom 𝐽 ↔ ( ∀ 𝑥 ∈ dom 𝐼 ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ∈ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐽 ∃! 𝑥 ∈ dom 𝐼 𝑖 = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) ) ) |
| 121 | 34 119 120 | sylanbrc | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → 𝑁 : dom 𝐼 –1-1-onto→ dom 𝐽 ) |
| 122 | 2fveq3 | ⊢ ( 𝑥 = 𝑖 → ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 123 | 122 | fveq2d | ⊢ ( 𝑥 = 𝑖 → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 124 | 123 | adantl | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = 𝑖 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑥 ) ) ) = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 125 | simpr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ dom 𝐼 ) | |
| 126 | fvexd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ∈ V ) | |
| 127 | 8 124 125 126 | fvmptd2 | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑁 ‘ 𝑖 ) = ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 128 | 127 | fveq2d | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) ) |
| 129 | 13 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝑀 : 𝐸 ⟶ 𝐷 ) |
| 130 | 28 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) ∈ 𝐸 ) |
| 131 | 129 130 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ 𝐷 ) |
| 132 | 131 4 | eleqtrdi | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 133 | f1ocnvfv2 | ⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 134 | 11 132 133 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) = ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 135 | simpr | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = ( 𝐼 ‘ 𝑖 ) ) → 𝑥 = ( 𝐼 ‘ 𝑖 ) ) | |
| 136 | 135 | imaeq2d | ⊢ ( ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) ∧ 𝑥 = ( 𝐼 ‘ 𝑖 ) ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 137 | simp3 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) | |
| 138 | 137 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → 𝐹 ∈ 𝑋 ) |
| 139 | 138 | imaexd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ∈ V ) |
| 140 | 7 136 130 139 | fvmptd2 | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝑀 ‘ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 141 | 128 134 140 | 3eqtrd | ⊢ ( ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 142 | 141 | ralrimiva | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 143 | 121 142 | jca | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑋 ) ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑀 : 𝐸 –1-1-onto→ 𝐷 ) → ( 𝑁 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑁 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐼 ‘ 𝑖 ) ) ) ) |