This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredgiedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| uspgredgiedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | uspgriedgedg | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘 ∈ 𝐸 𝑘 = ( 𝐼 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredgiedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | uspgredgiedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | 2 | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 4 | f1of | ⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) |
| 6 | feq3 | ⊢ ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) ) | |
| 7 | 1 6 | ax-mp | ⊢ ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) |
| 8 | 5 7 | sylibr | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
| 9 | fdmeu | ⊢ ( ( 𝐼 : dom 𝐼 ⟶ 𝐸 ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘 ∈ 𝐸 ( 𝐼 ‘ 𝑋 ) = 𝑘 ) | |
| 10 | 8 9 | sylan | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘 ∈ 𝐸 ( 𝐼 ‘ 𝑋 ) = 𝑘 ) |
| 11 | eqcom | ⊢ ( 𝑘 = ( 𝐼 ‘ 𝑋 ) ↔ ( 𝐼 ‘ 𝑋 ) = 𝑘 ) | |
| 12 | 11 | reubii | ⊢ ( ∃! 𝑘 ∈ 𝐸 𝑘 = ( 𝐼 ‘ 𝑋 ) ↔ ∃! 𝑘 ∈ 𝐸 ( 𝐼 ‘ 𝑋 ) = 𝑘 ) |
| 13 | 10 12 | sylibr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘 ∈ 𝐸 𝑘 = ( 𝐼 ‘ 𝑋 ) ) |