This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isufil2 | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | ufilmax | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) → 𝐹 = 𝑓 ) | |
| 3 | 2 | 3expia | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) |
| 4 | 3 | ralrimiva | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) |
| 5 | 1 4 | jca | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ) |
| 6 | simpl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 7 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋 ) | |
| 8 | simpll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 9 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 10 | unexg | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { 𝑥 } ∈ V ) → ( 𝐹 ∪ { 𝑥 } ) ∈ V ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝐹 ∪ { 𝑥 } ) ∈ V ) |
| 12 | ssfii | ⊢ ( ( 𝐹 ∪ { 𝑥 } ) ∈ V → ( 𝐹 ∪ { 𝑥 } ) ⊆ ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝐹 ∪ { 𝑥 } ) ⊆ ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) |
| 14 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 16 | 7 | biimpri | ⊢ ( 𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝒫 𝑋 ) |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝑥 ∈ 𝒫 𝑋 ) |
| 18 | 17 | snssd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → { 𝑥 } ⊆ 𝒫 𝑋 ) |
| 19 | 15 18 | unssd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝐹 ∪ { 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 20 | ssun2 | ⊢ { 𝑥 } ⊆ ( 𝐹 ∪ { 𝑥 } ) | |
| 21 | vex | ⊢ 𝑥 ∈ V | |
| 22 | 21 | snnz | ⊢ { 𝑥 } ≠ ∅ |
| 23 | ssn0 | ⊢ ( ( { 𝑥 } ⊆ ( 𝐹 ∪ { 𝑥 } ) ∧ { 𝑥 } ≠ ∅ ) → ( 𝐹 ∪ { 𝑥 } ) ≠ ∅ ) | |
| 24 | 20 22 23 | mp2an | ⊢ ( 𝐹 ∪ { 𝑥 } ) ≠ ∅ |
| 25 | 24 | a1i | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝐹 ∪ { 𝑥 } ) ≠ ∅ ) |
| 26 | simpr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) | |
| 27 | ineq2 | ⊢ ( 𝑓 = 𝑥 → ( 𝑦 ∩ 𝑓 ) = ( 𝑦 ∩ 𝑥 ) ) | |
| 28 | 27 | neeq1d | ⊢ ( 𝑓 = 𝑥 → ( ( 𝑦 ∩ 𝑓 ) ≠ ∅ ↔ ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) ) |
| 29 | 21 28 | ralsn | ⊢ ( ∀ 𝑓 ∈ { 𝑥 } ( 𝑦 ∩ 𝑓 ) ≠ ∅ ↔ ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) |
| 30 | 29 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐹 ∀ 𝑓 ∈ { 𝑥 } ( 𝑦 ∩ 𝑓 ) ≠ ∅ ↔ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) |
| 31 | 26 30 | sylibr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐹 ∀ 𝑓 ∈ { 𝑥 } ( 𝑦 ∩ 𝑓 ) ≠ ∅ ) |
| 32 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 34 | simplr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝑥 ⊆ 𝑋 ) | |
| 35 | inss2 | ⊢ ( 𝑋 ∩ 𝑥 ) ⊆ 𝑥 | |
| 36 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 37 | 36 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 38 | ineq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∩ 𝑥 ) = ( 𝑋 ∩ 𝑥 ) ) | |
| 39 | 38 | neeq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 ∩ 𝑥 ) ≠ ∅ ↔ ( 𝑋 ∩ 𝑥 ) ≠ ∅ ) ) |
| 40 | 39 | rspcva | ⊢ ( ( 𝑋 ∈ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝑋 ∩ 𝑥 ) ≠ ∅ ) |
| 41 | 37 40 | sylan | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝑋 ∩ 𝑥 ) ≠ ∅ ) |
| 42 | ssn0 | ⊢ ( ( ( 𝑋 ∩ 𝑥 ) ⊆ 𝑥 ∧ ( 𝑋 ∩ 𝑥 ) ≠ ∅ ) → 𝑥 ≠ ∅ ) | |
| 43 | 35 41 42 | sylancr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝑥 ≠ ∅ ) |
| 44 | 36 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝑋 ∈ 𝐹 ) |
| 45 | snfbas | ⊢ ( ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ∧ 𝑋 ∈ 𝐹 ) → { 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) | |
| 46 | 34 43 44 45 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → { 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) |
| 47 | fbunfip | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑓 ∈ { 𝑥 } ( 𝑦 ∩ 𝑓 ) ≠ ∅ ) ) | |
| 48 | 33 46 47 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑓 ∈ { 𝑥 } ( 𝑦 ∩ 𝑓 ) ≠ ∅ ) ) |
| 49 | 31 48 | mpbird | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) |
| 50 | fsubbas | ⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { 𝑥 } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) | |
| 51 | 44 50 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { 𝑥 } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) |
| 52 | 19 25 49 51 | mpbir3and | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 53 | ssfg | ⊢ ( ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) | |
| 54 | 52 53 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) |
| 55 | 13 54 | sstrd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝐹 ∪ { 𝑥 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) |
| 56 | 55 | unssad | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) |
| 57 | fgcl | ⊢ ( ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 58 | sseq2 | ⊢ ( 𝑓 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → ( 𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) | |
| 59 | eqeq2 | ⊢ ( 𝑓 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → ( 𝐹 = 𝑓 ↔ 𝐹 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) | |
| 60 | 58 59 | imbi12d | ⊢ ( 𝑓 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → ( ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ↔ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → 𝐹 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) ) |
| 61 | 60 | rspcv | ⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) → ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → 𝐹 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) ) |
| 62 | 52 57 61 | 3syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) → ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → 𝐹 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) ) |
| 63 | 56 62 | mpid | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) → 𝐹 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) |
| 64 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 65 | 20 64 | sselii | ⊢ 𝑥 ∈ ( 𝐹 ∪ { 𝑥 } ) |
| 66 | 65 | a1i | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝑥 ∈ ( 𝐹 ∪ { 𝑥 } ) ) |
| 67 | 55 66 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → 𝑥 ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) |
| 68 | eleq2 | ⊢ ( 𝐹 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → ( 𝑥 ∈ 𝐹 ↔ 𝑥 ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) ) ) | |
| 69 | 67 68 | syl5ibrcom | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( 𝐹 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 } ) ) ) → 𝑥 ∈ 𝐹 ) ) |
| 70 | 63 69 | syld | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) → 𝑥 ∈ 𝐹 ) ) |
| 71 | 70 | impancom | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) → ( ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 72 | 71 | an32s | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 73 | 72 | con3d | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) ) |
| 74 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝐹 ¬ ( 𝑦 ∩ 𝑥 ) ≠ ∅ ↔ ¬ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) | |
| 75 | nne | ⊢ ( ¬ ( 𝑦 ∩ 𝑥 ) ≠ ∅ ↔ ( 𝑦 ∩ 𝑥 ) = ∅ ) | |
| 76 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) | |
| 77 | reldisj | ⊢ ( 𝑦 ⊆ 𝑋 → ( ( 𝑦 ∩ 𝑥 ) = ∅ ↔ 𝑦 ⊆ ( 𝑋 ∖ 𝑥 ) ) ) | |
| 78 | 76 77 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝑦 ∩ 𝑥 ) = ∅ ↔ 𝑦 ⊆ ( 𝑋 ∖ 𝑥 ) ) ) |
| 79 | difss | ⊢ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 | |
| 80 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ∧ 𝑦 ⊆ ( 𝑋 ∖ 𝑥 ) ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) | |
| 81 | 80 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 → ( 𝑦 ⊆ ( 𝑋 ∖ 𝑥 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) ) |
| 82 | 79 81 | mpii | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑦 ⊆ ( 𝑋 ∖ 𝑥 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) |
| 83 | 82 | imp | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 ⊆ ( 𝑋 ∖ 𝑥 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 84 | 78 83 | sylbid | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝑦 ∩ 𝑥 ) = ∅ → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 85 | 75 84 | biimtrid | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → ( ¬ ( 𝑦 ∩ 𝑥 ) ≠ ∅ → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 86 | 85 | rexlimdva | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐹 ¬ ( 𝑦 ∩ 𝑥 ) ≠ ∅ → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 87 | 74 86 | biimtrrid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ¬ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 88 | 87 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ ∀ 𝑦 ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ≠ ∅ → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 89 | 73 88 | syld | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 90 | 89 | orrd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 91 | 7 90 | sylan2b | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 92 | 91 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 93 | isufil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) | |
| 94 | 6 92 93 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) |
| 95 | 5 94 | impbii | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝐹 = 𝑓 ) ) ) |