This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010) (Revised by Mario Carneiro, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufprim | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 4 | simpr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ∈ 𝐹 ) | |
| 5 | unss | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) | |
| 6 | 5 | biimpi | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 9 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 10 | 9 | a1i | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 11 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) | |
| 12 | 3 4 8 10 11 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) |
| 13 | 12 | ex | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐹 → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |
| 14 | 2 | adantr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 15 | simpr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → 𝐵 ∈ 𝐹 ) | |
| 16 | 7 | adantr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 17 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 18 | 17 | a1i | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 19 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐵 ∈ 𝐹 ∧ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) | |
| 20 | 14 15 16 18 19 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) |
| 21 | 20 | ex | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐵 ∈ 𝐹 → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |
| 22 | 13 21 | jaod | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |
| 23 | ufilb | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ¬ 𝐴 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) | |
| 24 | 23 | 3adant3 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ¬ 𝐴 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( ¬ 𝐴 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) |
| 26 | 2 | 3ad2ant1 | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 27 | difun2 | ⊢ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) | |
| 28 | uncom | ⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) | |
| 29 | 28 | difeq1i | ⊢ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) |
| 30 | 27 29 | eqtr3i | ⊢ ( 𝐵 ∖ 𝐴 ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) |
| 31 | 30 | ineq2i | ⊢ ( 𝑋 ∩ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑋 ∩ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) |
| 32 | indifcom | ⊢ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∩ ( 𝐵 ∖ 𝐴 ) ) | |
| 33 | indifcom | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∩ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) | |
| 34 | 31 32 33 | 3eqtr4i | ⊢ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) |
| 35 | filin | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ) | |
| 36 | 2 35 | syl3an1 | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ) |
| 37 | 34 36 | eqeltrid | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ) |
| 38 | simp13 | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → 𝐵 ⊆ 𝑋 ) | |
| 39 | inss1 | ⊢ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ⊆ 𝐵 | |
| 40 | 39 | a1i | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ⊆ 𝐵 ) |
| 41 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ⊆ 𝐵 ) ) → 𝐵 ∈ 𝐹 ) | |
| 42 | 26 37 38 40 41 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → 𝐵 ∈ 𝐹 ) |
| 43 | 42 | 3expia | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 → 𝐵 ∈ 𝐹 ) ) |
| 44 | 25 43 | sylbid | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( ¬ 𝐴 ∈ 𝐹 → 𝐵 ∈ 𝐹 ) ) |
| 45 | 44 | orrd | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) ) |
| 46 | 45 | ex | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 → ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) ) ) |
| 47 | 22 46 | impbid | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |