This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isufil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ufil | ⊢ UFil = ( 𝑦 ∈ V ↦ { 𝑧 ∈ ( Fil ‘ 𝑦 ) ∣ ∀ 𝑥 ∈ 𝒫 𝑦 ( 𝑥 ∈ 𝑧 ∨ ( 𝑦 ∖ 𝑥 ) ∈ 𝑧 ) } ) | |
| 2 | pweq | ⊢ ( 𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝐹 ) → 𝒫 𝑦 = 𝒫 𝑋 ) |
| 4 | eleq2 | ⊢ ( 𝑧 = 𝐹 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝐹 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐹 ) ) |
| 6 | difeq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑥 ) ) | |
| 7 | eleq12 | ⊢ ( ( ( 𝑦 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑥 ) ∧ 𝑧 = 𝐹 ) → ( ( 𝑦 ∖ 𝑥 ) ∈ 𝑧 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝐹 ) → ( ( 𝑦 ∖ 𝑥 ) ∈ 𝑧 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 9 | 5 8 | orbi12d | ⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝐹 ) → ( ( 𝑥 ∈ 𝑧 ∨ ( 𝑦 ∖ 𝑥 ) ∈ 𝑧 ) ↔ ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) |
| 10 | 3 9 | raleqbidv | ⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑦 ( 𝑥 ∈ 𝑧 ∨ ( 𝑦 ∖ 𝑥 ) ∈ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑦 = 𝑋 → ( Fil ‘ 𝑦 ) = ( Fil ‘ 𝑋 ) ) | |
| 12 | fvex | ⊢ ( Fil ‘ 𝑦 ) ∈ V | |
| 13 | elfvdm | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ dom Fil ) | |
| 14 | 1 10 11 12 13 | elmptrab2 | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) |