This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issrngd.k | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑅 ) ) | |
| issrngd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | ||
| issrngd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | ||
| issrngd.c | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝑅 ) ) | ||
| issrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| issrngd.cl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∗ ‘ 𝑥 ) ∈ 𝐾 ) | ||
| issrngd.dp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) | ||
| issrngd.dt | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) | ||
| issrngd.id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) | ||
| Assertion | issrngd | ⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issrngd.k | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑅 ) ) | |
| 2 | issrngd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | |
| 3 | issrngd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | |
| 4 | issrngd.c | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝑅 ) ) | |
| 5 | issrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | issrngd.cl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∗ ‘ 𝑥 ) ∈ 𝐾 ) | |
| 7 | issrngd.dp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) | |
| 8 | issrngd.dt | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) | |
| 9 | issrngd.id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 13 | 12 11 | oppr1 | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
| 14 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 16 | 12 | opprring | ⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 17 | 5 16 | syl | ⊢ ( 𝜑 → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 18 | id | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → 𝑥 = ( 1r ‘ 𝑅 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) | |
| 20 | 19 | fveq2d | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 21 | 18 20 | eqeq12d | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ↔ ( 1r ‘ 𝑅 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 22 | 9 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 23 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 24 | 4 | fveq1d | ⊢ ( 𝜑 → ( ∗ ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
| 25 | 4 24 | fveq12d | ⊢ ( 𝜑 → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 26 | 25 | eqeq1d | ⊢ ( 𝜑 → ( ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 27 | 22 23 26 | 3imtr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
| 28 | 27 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 29 | 28 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 31 | 10 11 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 | 5 31 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 | 21 30 32 | rspcdva | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 35 | 19 | eleq1d | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 36 | 6 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 → ( ∗ ‘ 𝑥 ) ∈ 𝐾 ) ) |
| 37 | 24 1 | eleq12d | ⊢ ( 𝜑 → ( ( ∗ ‘ 𝑥 ) ∈ 𝐾 ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 38 | 36 23 37 | 3imtr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 39 | 38 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 40 | 35 39 32 | rspcdva | ⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 41 | 8 | 3expib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) ) |
| 42 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 43 | 23 42 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 44 | 3 | oveqd | ⊢ ( 𝜑 → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 45 | 4 44 | fveq12d | ⊢ ( 𝜑 → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 46 | 4 | fveq1d | ⊢ ( 𝜑 → ( ∗ ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) |
| 47 | 3 46 24 | oveq123d | ⊢ ( 𝜑 → ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 48 | 45 47 | eqeq12d | ⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 49 | 41 43 48 | 3imtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 50 | 49 | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 51 | fvoveq1 | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) ) | |
| 52 | 19 | oveq2d | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 53 | 51 52 | eqeq12d | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 54 | oveq2 | ⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) | |
| 55 | 54 | fveq2d | ⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 56 | fveq2 | ⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) | |
| 57 | 56 | oveq1d | ⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 58 | 55 57 | eqeq12d | ⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 59 | 53 58 | rspc2va | ⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 60 | 32 40 50 59 | syl21anc | ⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 61 | 34 60 | eqtr4d | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 62 | 10 14 11 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 63 | 5 40 62 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 64 | 63 | fveq2d | ⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 65 | 61 63 64 | 3eqtr3d | ⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 66 | eqid | ⊢ ( *𝑟 ‘ 𝑅 ) = ( *𝑟 ‘ 𝑅 ) | |
| 67 | eqid | ⊢ ( *rf ‘ 𝑅 ) = ( *rf ‘ 𝑅 ) | |
| 68 | 10 66 67 | stafval | ⊢ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 69 | 32 68 | syl | ⊢ ( 𝜑 → ( ( *rf ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 70 | 65 69 33 | 3eqtr4d | ⊢ ( 𝜑 → ( ( *rf ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 71 | 49 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 72 | 10 14 12 15 | opprmul | ⊢ ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
| 73 | 71 72 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 74 | 10 14 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 75 | 74 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 76 | 5 75 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 77 | 10 66 67 | stafval | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 78 | 76 77 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 79 | 10 66 67 | stafval | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
| 80 | 10 66 67 | stafval | ⊢ ( 𝑦 ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) |
| 81 | 79 80 | oveqan12d | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 82 | 81 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 83 | 73 78 82 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 84 | 12 10 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 85 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 86 | 12 85 | oppradd | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝑅 ) ) |
| 87 | 38 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 88 | 10 66 67 | staffval | ⊢ ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
| 89 | 87 88 | fmptd | ⊢ ( 𝜑 → ( *rf ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 90 | 7 | 3expib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) ) |
| 91 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 92 | 4 91 | fveq12d | ⊢ ( 𝜑 → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 93 | 2 24 46 | oveq123d | ⊢ ( 𝜑 → ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 94 | 92 93 | eqeq12d | ⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
| 95 | 90 43 94 | 3imtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
| 96 | 95 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 97 | 10 85 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 98 | 97 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 99 | 5 98 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 100 | 10 66 67 | stafval | ⊢ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 101 | 99 100 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 102 | 79 80 | oveqan12d | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 103 | 102 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 104 | 96 101 103 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 105 | 10 11 13 14 15 5 17 70 83 84 85 86 89 104 | isrhmd | ⊢ ( 𝜑 → ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ) |
| 106 | 10 66 67 | staffval | ⊢ ( *rf ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) |
| 107 | 106 | fmpt | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ↔ ( *rf ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 108 | 89 107 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 109 | 108 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 110 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 111 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) | |
| 112 | 111 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 113 | 110 112 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ↔ 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
| 114 | 113 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 115 | 30 114 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 116 | 115 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 117 | fveq2 | ⊢ ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) | |
| 118 | 117 | eqeq2d | ⊢ ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) → ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ↔ 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
| 119 | 116 118 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 120 | 29 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 121 | fveq2 | ⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) | |
| 122 | 121 | eqeq2d | ⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ↔ 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
| 123 | 120 122 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) → 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 124 | 119 123 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ↔ 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 125 | 88 87 109 124 | f1ocnv2d | ⊢ ( 𝜑 → ( ( *rf ‘ 𝑅 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) ∧ ◡ ( *rf ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
| 126 | 125 | simprd | ⊢ ( 𝜑 → ◡ ( *rf ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 127 | 106 126 | eqtr4id | ⊢ ( 𝜑 → ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) |
| 128 | 12 67 | issrng | ⊢ ( 𝑅 ∈ *-Ring ↔ ( ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ∧ ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) ) |
| 129 | 105 127 128 | sylanbrc | ⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |