This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issrng.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| issrng.i | ⊢ ∗ = ( *rf ‘ 𝑅 ) | ||
| Assertion | issrng | ⊢ ( 𝑅 ∈ *-Ring ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issrng.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | issrng.i | ⊢ ∗ = ( *rf ‘ 𝑅 ) | |
| 3 | df-srng | ⊢ *-Ring = { 𝑟 ∣ [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) } | |
| 4 | 3 | eleq2i | ⊢ ( 𝑅 ∈ *-Ring ↔ 𝑅 ∈ { 𝑟 ∣ [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) } ) |
| 5 | rhmrcl1 | ⊢ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) → 𝑅 ∈ Ring ) | |
| 6 | 5 | adantr | ⊢ ( ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) → 𝑅 ∈ Ring ) |
| 7 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( *rf ‘ 𝑟 ) ∈ V ) | |
| 8 | id | ⊢ ( 𝑖 = ( *rf ‘ 𝑟 ) → 𝑖 = ( *rf ‘ 𝑟 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( *rf ‘ 𝑟 ) = ( *rf ‘ 𝑅 ) ) | |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( *rf ‘ 𝑟 ) = ∗ ) |
| 11 | 8 10 | sylan9eqr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → 𝑖 = ∗ ) |
| 12 | simpl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( oppr ‘ 𝑟 ) = ( oppr ‘ 𝑅 ) ) |
| 14 | 13 1 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( oppr ‘ 𝑟 ) = 𝑂 ) |
| 15 | 12 14 | oveq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) = ( 𝑅 RingHom 𝑂 ) ) |
| 16 | 11 15 | eleq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ↔ ∗ ∈ ( 𝑅 RingHom 𝑂 ) ) ) |
| 17 | 11 | cnveqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ◡ 𝑖 = ◡ ∗ ) |
| 18 | 11 17 | eqeq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( 𝑖 = ◡ 𝑖 ↔ ∗ = ◡ ∗ ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) ) |
| 20 | 7 19 | sbcied | ⊢ ( 𝑟 = 𝑅 → ( [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) ) |
| 21 | 6 20 | elab3 | ⊢ ( 𝑅 ∈ { 𝑟 ∣ [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) } ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) |
| 22 | 4 21 | bitri | ⊢ ( 𝑅 ∈ *-Ring ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) |