This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| oppr1.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | oppr1 | ⊢ 1 = ( 1r ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | oppr1.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) | |
| 6 | 3 4 1 5 | opprmul | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
| 7 | 6 | eqeq1i | ⊢ ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ↔ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) |
| 8 | 3 4 1 5 | opprmul | ⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
| 9 | 8 | eqeq1i | ⊢ ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 10 | 7 9 | anbi12ci | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 11 | 10 | ralbii | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
| 12 | 11 | anbi2i | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 13 | 12 | iotabii | ⊢ ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 14 | eqid | ⊢ ( mulGrp ‘ 𝑂 ) = ( mulGrp ‘ 𝑂 ) | |
| 15 | 1 3 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 16 | 14 15 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑂 ) ) |
| 17 | 14 5 | mgpplusg | ⊢ ( .r ‘ 𝑂 ) = ( +g ‘ ( mulGrp ‘ 𝑂 ) ) |
| 18 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) | |
| 19 | 16 17 18 | grpidval | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ) |
| 20 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 21 | 20 3 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 22 | 20 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 23 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 24 | 21 22 23 | grpidval | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 25 | 13 19 24 | 3eqtr4i | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 26 | eqid | ⊢ ( 1r ‘ 𝑂 ) = ( 1r ‘ 𝑂 ) | |
| 27 | 14 26 | ringidval | ⊢ ( 1r ‘ 𝑂 ) = ( 0g ‘ ( mulGrp ‘ 𝑂 ) ) |
| 28 | 20 2 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 29 | 25 27 28 | 3eqtr4ri | ⊢ 1 = ( 1r ‘ 𝑂 ) |