This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1od.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| f1o2d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | ||
| f1o2d.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝐴 ) | ||
| f1o2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) | ||
| Assertion | f1ocnv2d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1od.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 2 | f1o2d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | |
| 3 | f1o2d.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝐴 ) | |
| 4 | f1o2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) | |
| 5 | eleq1a | ⊢ ( 𝐶 ∈ 𝐵 → ( 𝑦 = 𝐶 → 𝑦 ∈ 𝐵 ) ) | |
| 6 | 2 5 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐶 → 𝑦 ∈ 𝐵 ) ) |
| 7 | 6 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → 𝑦 ∈ 𝐵 ) |
| 8 | 4 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝐷 ) |
| 9 | 8 | exp42 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑦 = 𝐶 → 𝑥 = 𝐷 ) ) ) ) |
| 10 | 9 | com34 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐷 ) ) ) ) |
| 11 | 10 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝐷 ) ) |
| 12 | 7 11 | jcai | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) |
| 13 | eleq1a | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 = 𝐷 → 𝑥 ∈ 𝐴 ) ) | |
| 14 | 3 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 → 𝑥 ∈ 𝐴 ) ) |
| 15 | 14 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → 𝑥 ∈ 𝐴 ) |
| 16 | 4 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑥 = 𝐷 ) → 𝑦 = 𝐶 ) |
| 17 | 16 | exp42 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐷 → 𝑦 = 𝐶 ) ) ) ) |
| 18 | 17 | com23 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝐷 → 𝑦 = 𝐶 ) ) ) ) |
| 19 | 18 | com34 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑥 = 𝐷 → ( 𝑥 ∈ 𝐴 → 𝑦 = 𝐶 ) ) ) ) |
| 20 | 19 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → ( 𝑥 ∈ 𝐴 → 𝑦 = 𝐶 ) ) |
| 21 | 15 20 | jcai | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
| 22 | 12 21 | impbida | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) ) |
| 23 | 1 2 3 22 | f1ocnvd | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) ) |