This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | staffval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| staffval.i | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | ||
| staffval.f | ⊢ ∙ = ( *rf ‘ 𝑅 ) | ||
| Assertion | staffval | ⊢ ∙ = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | staffval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | staffval.i | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| 3 | staffval.f | ⊢ ∙ = ( *rf ‘ 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑓 = 𝑅 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝑅 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑓 = 𝑅 → ( Base ‘ 𝑓 ) = 𝐵 ) |
| 6 | fveq2 | ⊢ ( 𝑓 = 𝑅 → ( *𝑟 ‘ 𝑓 ) = ( *𝑟 ‘ 𝑅 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑓 = 𝑅 → ( *𝑟 ‘ 𝑓 ) = ∗ ) |
| 8 | 7 | fveq1d | ⊢ ( 𝑓 = 𝑅 → ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) = ( ∗ ‘ 𝑥 ) ) |
| 9 | 5 8 | mpteq12dv | ⊢ ( 𝑓 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ) |
| 10 | df-staf | ⊢ *rf = ( 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) ) ) | |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) | |
| 12 | fvrn0 | ⊢ ( ∗ ‘ 𝑥 ) ∈ ( ran ∗ ∪ { ∅ } ) | |
| 13 | 12 | a1i | ⊢ ( 𝑥 ∈ 𝐵 → ( ∗ ‘ 𝑥 ) ∈ ( ran ∗ ∪ { ∅ } ) ) |
| 14 | 11 13 | fmpti | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) : 𝐵 ⟶ ( ran ∗ ∪ { ∅ } ) |
| 15 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 16 | 2 | fvexi | ⊢ ∗ ∈ V |
| 17 | 16 | rnex | ⊢ ran ∗ ∈ V |
| 18 | p0ex | ⊢ { ∅ } ∈ V | |
| 19 | 17 18 | unex | ⊢ ( ran ∗ ∪ { ∅ } ) ∈ V |
| 20 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) : 𝐵 ⟶ ( ran ∗ ∪ { ∅ } ) ∧ 𝐵 ∈ V ∧ ( ran ∗ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ∈ V ) | |
| 21 | 14 15 19 20 | mp3an | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ∈ V |
| 22 | 9 10 21 | fvmpt | ⊢ ( 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ) |
| 23 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ∅ ) | |
| 24 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( ∗ ‘ 𝑥 ) ) = ∅ | |
| 25 | 23 24 | eqtr4di | ⊢ ( ¬ 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ ∅ ↦ ( ∗ ‘ 𝑥 ) ) ) |
| 26 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) | |
| 27 | 1 26 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
| 28 | 27 | mpteq1d | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) = ( 𝑥 ∈ ∅ ↦ ( ∗ ‘ 𝑥 ) ) ) |
| 29 | 25 28 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ) |
| 30 | 22 29 | pm2.61i | ⊢ ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) |
| 31 | 3 30 | eqtri | ⊢ ∙ = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) |