This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issrngd.k | |- ( ph -> K = ( Base ` R ) ) |
|
| issrngd.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| issrngd.t | |- ( ph -> .x. = ( .r ` R ) ) |
||
| issrngd.c | |- ( ph -> .* = ( *r ` R ) ) |
||
| issrngd.r | |- ( ph -> R e. Ring ) |
||
| issrngd.cl | |- ( ( ph /\ x e. K ) -> ( .* ` x ) e. K ) |
||
| issrngd.dp | |- ( ( ph /\ x e. K /\ y e. K ) -> ( .* ` ( x .+ y ) ) = ( ( .* ` x ) .+ ( .* ` y ) ) ) |
||
| issrngd.dt | |- ( ( ph /\ x e. K /\ y e. K ) -> ( .* ` ( x .x. y ) ) = ( ( .* ` y ) .x. ( .* ` x ) ) ) |
||
| issrngd.id | |- ( ( ph /\ x e. K ) -> ( .* ` ( .* ` x ) ) = x ) |
||
| Assertion | issrngd | |- ( ph -> R e. *Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issrngd.k | |- ( ph -> K = ( Base ` R ) ) |
|
| 2 | issrngd.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 3 | issrngd.t | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 4 | issrngd.c | |- ( ph -> .* = ( *r ` R ) ) |
|
| 5 | issrngd.r | |- ( ph -> R e. Ring ) |
|
| 6 | issrngd.cl | |- ( ( ph /\ x e. K ) -> ( .* ` x ) e. K ) |
|
| 7 | issrngd.dp | |- ( ( ph /\ x e. K /\ y e. K ) -> ( .* ` ( x .+ y ) ) = ( ( .* ` x ) .+ ( .* ` y ) ) ) |
|
| 8 | issrngd.dt | |- ( ( ph /\ x e. K /\ y e. K ) -> ( .* ` ( x .x. y ) ) = ( ( .* ` y ) .x. ( .* ` x ) ) ) |
|
| 9 | issrngd.id | |- ( ( ph /\ x e. K ) -> ( .* ` ( .* ` x ) ) = x ) |
|
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 12 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 13 | 12 11 | oppr1 | |- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
| 14 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 15 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 16 | 12 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 17 | 5 16 | syl | |- ( ph -> ( oppR ` R ) e. Ring ) |
| 18 | id | |- ( x = ( 1r ` R ) -> x = ( 1r ` R ) ) |
|
| 19 | fveq2 | |- ( x = ( 1r ` R ) -> ( ( *r ` R ) ` x ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
|
| 20 | 19 | fveq2d | |- ( x = ( 1r ` R ) -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 21 | 18 20 | eqeq12d | |- ( x = ( 1r ` R ) -> ( x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) <-> ( 1r ` R ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 22 | 9 | ex | |- ( ph -> ( x e. K -> ( .* ` ( .* ` x ) ) = x ) ) |
| 23 | 1 | eleq2d | |- ( ph -> ( x e. K <-> x e. ( Base ` R ) ) ) |
| 24 | 4 | fveq1d | |- ( ph -> ( .* ` x ) = ( ( *r ` R ) ` x ) ) |
| 25 | 4 24 | fveq12d | |- ( ph -> ( .* ` ( .* ` x ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 26 | 25 | eqeq1d | |- ( ph -> ( ( .* ` ( .* ` x ) ) = x <-> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = x ) ) |
| 27 | 22 23 26 | 3imtr3d | |- ( ph -> ( x e. ( Base ` R ) -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = x ) ) |
| 28 | 27 | imp | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = x ) |
| 29 | 28 | eqcomd | |- ( ( ph /\ x e. ( Base ` R ) ) -> x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. x e. ( Base ` R ) x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 31 | 10 11 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 32 | 5 31 | syl | |- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 33 | 21 30 32 | rspcdva | |- ( ph -> ( 1r ` R ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 34 | 33 | oveq1d | |- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 35 | 19 | eleq1d | |- ( x = ( 1r ` R ) -> ( ( ( *r ` R ) ` x ) e. ( Base ` R ) <-> ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) ) |
| 36 | 6 | ex | |- ( ph -> ( x e. K -> ( .* ` x ) e. K ) ) |
| 37 | 24 1 | eleq12d | |- ( ph -> ( ( .* ` x ) e. K <-> ( ( *r ` R ) ` x ) e. ( Base ` R ) ) ) |
| 38 | 36 23 37 | 3imtr3d | |- ( ph -> ( x e. ( Base ` R ) -> ( ( *r ` R ) ` x ) e. ( Base ` R ) ) ) |
| 39 | 38 | ralrimiv | |- ( ph -> A. x e. ( Base ` R ) ( ( *r ` R ) ` x ) e. ( Base ` R ) ) |
| 40 | 35 39 32 | rspcdva | |- ( ph -> ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) |
| 41 | 8 | 3expib | |- ( ph -> ( ( x e. K /\ y e. K ) -> ( .* ` ( x .x. y ) ) = ( ( .* ` y ) .x. ( .* ` x ) ) ) ) |
| 42 | 1 | eleq2d | |- ( ph -> ( y e. K <-> y e. ( Base ` R ) ) ) |
| 43 | 23 42 | anbi12d | |- ( ph -> ( ( x e. K /\ y e. K ) <-> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) ) |
| 44 | 3 | oveqd | |- ( ph -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 45 | 4 44 | fveq12d | |- ( ph -> ( .* ` ( x .x. y ) ) = ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) ) |
| 46 | 4 | fveq1d | |- ( ph -> ( .* ` y ) = ( ( *r ` R ) ` y ) ) |
| 47 | 3 46 24 | oveq123d | |- ( ph -> ( ( .* ` y ) .x. ( .* ` x ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) |
| 48 | 45 47 | eqeq12d | |- ( ph -> ( ( .* ` ( x .x. y ) ) = ( ( .* ` y ) .x. ( .* ` x ) ) <-> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) ) |
| 49 | 41 43 48 | 3imtr3d | |- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) ) |
| 50 | 49 | ralrimivv | |- ( ph -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) |
| 51 | fvoveq1 | |- ( x = ( 1r ` R ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) ) |
|
| 52 | 19 | oveq2d | |- ( x = ( 1r ` R ) -> ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 53 | 51 52 | eqeq12d | |- ( x = ( 1r ` R ) -> ( ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) <-> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 54 | oveq2 | |- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) y ) = ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
|
| 55 | 54 | fveq2d | |- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 56 | fveq2 | |- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( *r ` R ) ` y ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
|
| 57 | 56 | oveq1d | |- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 58 | 55 57 | eqeq12d | |- ( y = ( ( *r ` R ) ` ( 1r ` R ) ) -> ( ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) <-> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 59 | 53 58 | rspc2va | |- ( ( ( ( 1r ` R ) e. ( Base ` R ) /\ ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 60 | 32 40 50 59 | syl21anc | |- ( ph -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 61 | 34 60 | eqtr4d | |- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) ) |
| 62 | 10 14 11 | ringlidm | |- ( ( R e. Ring /\ ( ( *r ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 63 | 5 40 62 | syl2anc | |- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 64 | 63 | fveq2d | |- ( ph -> ( ( *r ` R ) ` ( ( 1r ` R ) ( .r ` R ) ( ( *r ` R ) ` ( 1r ` R ) ) ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 65 | 61 63 64 | 3eqtr3d | |- ( ph -> ( ( *r ` R ) ` ( 1r ` R ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` ( 1r ` R ) ) ) ) |
| 66 | eqid | |- ( *r ` R ) = ( *r ` R ) |
|
| 67 | eqid | |- ( *rf ` R ) = ( *rf ` R ) |
|
| 68 | 10 66 67 | stafval | |- ( ( 1r ` R ) e. ( Base ` R ) -> ( ( *rf ` R ) ` ( 1r ` R ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 69 | 32 68 | syl | |- ( ph -> ( ( *rf ` R ) ` ( 1r ` R ) ) = ( ( *r ` R ) ` ( 1r ` R ) ) ) |
| 70 | 65 69 33 | 3eqtr4d | |- ( ph -> ( ( *rf ` R ) ` ( 1r ` R ) ) = ( 1r ` R ) ) |
| 71 | 49 | imp | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) ) |
| 72 | 10 14 12 15 | opprmul | |- ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) = ( ( ( *r ` R ) ` y ) ( .r ` R ) ( ( *r ` R ) ` x ) ) |
| 73 | 71 72 | eqtr4di | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) ) |
| 74 | 10 14 | ringcl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 75 | 74 | 3expb | |- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 76 | 5 75 | sylan | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 77 | 10 66 67 | stafval | |- ( ( x ( .r ` R ) y ) e. ( Base ` R ) -> ( ( *rf ` R ) ` ( x ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) ) |
| 78 | 76 77 | syl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( .r ` R ) y ) ) = ( ( *r ` R ) ` ( x ( .r ` R ) y ) ) ) |
| 79 | 10 66 67 | stafval | |- ( x e. ( Base ` R ) -> ( ( *rf ` R ) ` x ) = ( ( *r ` R ) ` x ) ) |
| 80 | 10 66 67 | stafval | |- ( y e. ( Base ` R ) -> ( ( *rf ` R ) ` y ) = ( ( *r ` R ) ` y ) ) |
| 81 | 79 80 | oveqan12d | |- ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( ( *rf ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) ) |
| 82 | 81 | adantl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( ( *rf ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *r ` R ) ` y ) ) ) |
| 83 | 73 78 82 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( .r ` R ) y ) ) = ( ( ( *rf ` R ) ` x ) ( .r ` ( oppR ` R ) ) ( ( *rf ` R ) ` y ) ) ) |
| 84 | 12 10 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 85 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 86 | 12 85 | oppradd | |- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
| 87 | 38 | imp | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( *r ` R ) ` x ) e. ( Base ` R ) ) |
| 88 | 10 66 67 | staffval | |- ( *rf ` R ) = ( x e. ( Base ` R ) |-> ( ( *r ` R ) ` x ) ) |
| 89 | 87 88 | fmptd | |- ( ph -> ( *rf ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 90 | 7 | 3expib | |- ( ph -> ( ( x e. K /\ y e. K ) -> ( .* ` ( x .+ y ) ) = ( ( .* ` x ) .+ ( .* ` y ) ) ) ) |
| 91 | 2 | oveqd | |- ( ph -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 92 | 4 91 | fveq12d | |- ( ph -> ( .* ` ( x .+ y ) ) = ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) ) |
| 93 | 2 24 46 | oveq123d | |- ( ph -> ( ( .* ` x ) .+ ( .* ` y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 94 | 92 93 | eqeq12d | |- ( ph -> ( ( .* ` ( x .+ y ) ) = ( ( .* ` x ) .+ ( .* ` y ) ) <-> ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) ) |
| 95 | 90 43 94 | 3imtr3d | |- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) ) |
| 96 | 95 | imp | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 97 | 10 85 | ringacl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 98 | 97 | 3expb | |- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 99 | 5 98 | sylan | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 100 | 10 66 67 | stafval | |- ( ( x ( +g ` R ) y ) e. ( Base ` R ) -> ( ( *rf ` R ) ` ( x ( +g ` R ) y ) ) = ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) ) |
| 101 | 99 100 | syl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( +g ` R ) y ) ) = ( ( *r ` R ) ` ( x ( +g ` R ) y ) ) ) |
| 102 | 79 80 | oveqan12d | |- ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( ( *rf ` R ) ` x ) ( +g ` R ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 103 | 102 | adantl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( ( *rf ` R ) ` x ) ( +g ` R ) ( ( *rf ` R ) ` y ) ) = ( ( ( *r ` R ) ` x ) ( +g ` R ) ( ( *r ` R ) ` y ) ) ) |
| 104 | 96 101 103 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( *rf ` R ) ` ( x ( +g ` R ) y ) ) = ( ( ( *rf ` R ) ` x ) ( +g ` R ) ( ( *rf ` R ) ` y ) ) ) |
| 105 | 10 11 13 14 15 5 17 70 83 84 85 86 89 104 | isrhmd | |- ( ph -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
| 106 | 10 66 67 | staffval | |- ( *rf ` R ) = ( y e. ( Base ` R ) |-> ( ( *r ` R ) ` y ) ) |
| 107 | 106 | fmpt | |- ( A. y e. ( Base ` R ) ( ( *r ` R ) ` y ) e. ( Base ` R ) <-> ( *rf ` R ) : ( Base ` R ) --> ( Base ` R ) ) |
| 108 | 89 107 | sylibr | |- ( ph -> A. y e. ( Base ` R ) ( ( *r ` R ) ` y ) e. ( Base ` R ) ) |
| 109 | 108 | r19.21bi | |- ( ( ph /\ y e. ( Base ` R ) ) -> ( ( *r ` R ) ` y ) e. ( Base ` R ) ) |
| 110 | id | |- ( x = y -> x = y ) |
|
| 111 | fveq2 | |- ( x = y -> ( ( *r ` R ) ` x ) = ( ( *r ` R ) ` y ) ) |
|
| 112 | 111 | fveq2d | |- ( x = y -> ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 113 | 110 112 | eqeq12d | |- ( x = y -> ( x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) <-> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) ) |
| 114 | 113 | rspccva | |- ( ( A. x e. ( Base ` R ) x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) /\ y e. ( Base ` R ) ) -> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 115 | 30 114 | sylan | |- ( ( ph /\ y e. ( Base ` R ) ) -> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 116 | 115 | adantrl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
| 117 | fveq2 | |- ( x = ( ( *r ` R ) ` y ) -> ( ( *r ` R ) ` x ) = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) |
|
| 118 | 117 | eqeq2d | |- ( x = ( ( *r ` R ) ` y ) -> ( y = ( ( *r ` R ) ` x ) <-> y = ( ( *r ` R ) ` ( ( *r ` R ) ` y ) ) ) ) |
| 119 | 116 118 | syl5ibrcom | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x = ( ( *r ` R ) ` y ) -> y = ( ( *r ` R ) ` x ) ) ) |
| 120 | 29 | adantrr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
| 121 | fveq2 | |- ( y = ( ( *r ` R ) ` x ) -> ( ( *r ` R ) ` y ) = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) |
|
| 122 | 121 | eqeq2d | |- ( y = ( ( *r ` R ) ` x ) -> ( x = ( ( *r ` R ) ` y ) <-> x = ( ( *r ` R ) ` ( ( *r ` R ) ` x ) ) ) ) |
| 123 | 120 122 | syl5ibrcom | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( y = ( ( *r ` R ) ` x ) -> x = ( ( *r ` R ) ` y ) ) ) |
| 124 | 119 123 | impbid | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x = ( ( *r ` R ) ` y ) <-> y = ( ( *r ` R ) ` x ) ) ) |
| 125 | 88 87 109 124 | f1ocnv2d | |- ( ph -> ( ( *rf ` R ) : ( Base ` R ) -1-1-onto-> ( Base ` R ) /\ `' ( *rf ` R ) = ( y e. ( Base ` R ) |-> ( ( *r ` R ) ` y ) ) ) ) |
| 126 | 125 | simprd | |- ( ph -> `' ( *rf ` R ) = ( y e. ( Base ` R ) |-> ( ( *r ` R ) ` y ) ) ) |
| 127 | 106 126 | eqtr4id | |- ( ph -> ( *rf ` R ) = `' ( *rf ` R ) ) |
| 128 | 12 67 | issrng | |- ( R e. *Ring <-> ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) /\ ( *rf ` R ) = `' ( *rf ` R ) ) ) |
| 129 | 105 127 128 | sylanbrc | |- ( ph -> R e. *Ring ) |