This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprring | ⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 3 | 1 | opprrng | ⊢ ( 𝑅 ∈ Rng → 𝑂 ∈ Rng ) |
| 4 | 2 3 | syl | ⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Rng ) |
| 5 | oveq1 | ⊢ ( 𝑧 = ( 1r ‘ 𝑅 ) → ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑧 = ( 1r ‘ 𝑅 ) → ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ↔ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ) ) |
| 7 | 6 | ovanraleqv | ⊢ ( 𝑧 = ( 1r ‘ 𝑅 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 10 | 8 9 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) | |
| 13 | 8 11 1 12 | opprmul | ⊢ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 14 | 8 11 9 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) |
| 15 | 13 14 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ) |
| 16 | 8 11 1 12 | opprmul | ⊢ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) |
| 17 | 8 11 9 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 18 | 16 17 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) |
| 19 | 15 18 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 20 | 19 | ralrimiva | ⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
| 21 | 7 10 20 | rspcedvdw | ⊢ ( 𝑅 ∈ Ring → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = 𝑥 ) ) |
| 22 | 1 8 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 23 | 22 12 | isringrng | ⊢ ( 𝑂 ∈ Ring ↔ ( 𝑂 ∈ Rng ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝑧 ( .r ‘ 𝑂 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑂 ) 𝑧 ) = 𝑥 ) ) ) |
| 24 | 4 21 23 | sylanbrc | ⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |