This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of Levy58 p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin1-3 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | porpss | ⊢ [⊊] Po 𝒫 𝐴 | |
| 2 | cnvpo | ⊢ ( [⊊] Po 𝒫 𝐴 ↔ ◡ [⊊] Po 𝒫 𝐴 ) | |
| 3 | 1 2 | mpbi | ⊢ ◡ [⊊] Po 𝒫 𝐴 |
| 4 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 5 | 4 | biimpi | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin ) |
| 6 | frfi | ⊢ ( ( ◡ [⊊] Po 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ Fin ) → ◡ [⊊] Fr 𝒫 𝐴 ) | |
| 7 | 3 5 6 | sylancr | ⊢ ( 𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴 ) |
| 8 | inss2 | ⊢ ( Fin ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 | |
| 9 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 10 | ssexg | ⊢ ( ( ( Fin ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → ( Fin ∩ 𝒫 𝐴 ) ∈ V ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → ( Fin ∩ 𝒫 𝐴 ) ∈ V ) |
| 12 | 0fi | ⊢ ∅ ∈ Fin | |
| 13 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 | |
| 14 | 12 13 | elini | ⊢ ∅ ∈ ( Fin ∩ 𝒫 𝐴 ) |
| 15 | 14 | ne0ii | ⊢ ( Fin ∩ 𝒫 𝐴 ) ≠ ∅ |
| 16 | fri | ⊢ ( ( ( ( Fin ∩ 𝒫 𝐴 ) ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴 ) ∧ ( ( Fin ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ∧ ( Fin ∩ 𝒫 𝐴 ) ≠ ∅ ) ) → ∃ 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ) | |
| 17 | 8 15 16 | mpanr12 | ⊢ ( ( ( Fin ∩ 𝒫 𝐴 ) ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴 ) → ∃ 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ) |
| 18 | 11 17 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ◡ [⊊] Fr 𝒫 𝐴 ) → ∃ 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ) |
| 19 | 18 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ [⊊] Fr 𝒫 𝐴 → ∃ 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ) ) |
| 20 | elinel1 | ⊢ ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) → 𝑏 ∈ Fin ) | |
| 21 | ralnex | ⊢ ( ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ↔ ¬ ∃ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) 𝑐 ◡ [⊊] 𝑏 ) | |
| 22 | 20 | adantr | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → 𝑏 ∈ Fin ) |
| 23 | snfi | ⊢ { 𝑑 } ∈ Fin | |
| 24 | unfi | ⊢ ( ( 𝑏 ∈ Fin ∧ { 𝑑 } ∈ Fin ) → ( 𝑏 ∪ { 𝑑 } ) ∈ Fin ) | |
| 25 | 22 23 24 | sylancl | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → ( 𝑏 ∪ { 𝑑 } ) ∈ Fin ) |
| 26 | elinel2 | ⊢ ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) → 𝑏 ∈ 𝒫 𝐴 ) | |
| 27 | 26 | elpwid | ⊢ ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → 𝑏 ⊆ 𝐴 ) |
| 29 | snssi | ⊢ ( 𝑑 ∈ 𝐴 → { 𝑑 } ⊆ 𝐴 ) | |
| 30 | 29 | ad2antrl | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → { 𝑑 } ⊆ 𝐴 ) |
| 31 | 28 30 | unssd | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → ( 𝑏 ∪ { 𝑑 } ) ⊆ 𝐴 ) |
| 32 | vex | ⊢ 𝑏 ∈ V | |
| 33 | vsnex | ⊢ { 𝑑 } ∈ V | |
| 34 | 32 33 | unex | ⊢ ( 𝑏 ∪ { 𝑑 } ) ∈ V |
| 35 | 34 | elpw | ⊢ ( ( 𝑏 ∪ { 𝑑 } ) ∈ 𝒫 𝐴 ↔ ( 𝑏 ∪ { 𝑑 } ) ⊆ 𝐴 ) |
| 36 | 31 35 | sylibr | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → ( 𝑏 ∪ { 𝑑 } ) ∈ 𝒫 𝐴 ) |
| 37 | 25 36 | elind | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → ( 𝑏 ∪ { 𝑑 } ) ∈ ( Fin ∩ 𝒫 𝐴 ) ) |
| 38 | disjsn | ⊢ ( ( 𝑏 ∩ { 𝑑 } ) = ∅ ↔ ¬ 𝑑 ∈ 𝑏 ) | |
| 39 | 38 | biimpri | ⊢ ( ¬ 𝑑 ∈ 𝑏 → ( 𝑏 ∩ { 𝑑 } ) = ∅ ) |
| 40 | vex | ⊢ 𝑑 ∈ V | |
| 41 | 40 | snnz | ⊢ { 𝑑 } ≠ ∅ |
| 42 | disjpss | ⊢ ( ( ( 𝑏 ∩ { 𝑑 } ) = ∅ ∧ { 𝑑 } ≠ ∅ ) → 𝑏 ⊊ ( 𝑏 ∪ { 𝑑 } ) ) | |
| 43 | 39 41 42 | sylancl | ⊢ ( ¬ 𝑑 ∈ 𝑏 → 𝑏 ⊊ ( 𝑏 ∪ { 𝑑 } ) ) |
| 44 | 43 | ad2antll | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → 𝑏 ⊊ ( 𝑏 ∪ { 𝑑 } ) ) |
| 45 | 34 32 | brcnv | ⊢ ( ( 𝑏 ∪ { 𝑑 } ) ◡ [⊊] 𝑏 ↔ 𝑏 [⊊] ( 𝑏 ∪ { 𝑑 } ) ) |
| 46 | 34 | brrpss | ⊢ ( 𝑏 [⊊] ( 𝑏 ∪ { 𝑑 } ) ↔ 𝑏 ⊊ ( 𝑏 ∪ { 𝑑 } ) ) |
| 47 | 45 46 | bitri | ⊢ ( ( 𝑏 ∪ { 𝑑 } ) ◡ [⊊] 𝑏 ↔ 𝑏 ⊊ ( 𝑏 ∪ { 𝑑 } ) ) |
| 48 | 44 47 | sylibr | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → ( 𝑏 ∪ { 𝑑 } ) ◡ [⊊] 𝑏 ) |
| 49 | breq1 | ⊢ ( 𝑐 = ( 𝑏 ∪ { 𝑑 } ) → ( 𝑐 ◡ [⊊] 𝑏 ↔ ( 𝑏 ∪ { 𝑑 } ) ◡ [⊊] 𝑏 ) ) | |
| 50 | 49 | rspcev | ⊢ ( ( ( 𝑏 ∪ { 𝑑 } ) ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑏 ∪ { 𝑑 } ) ◡ [⊊] 𝑏 ) → ∃ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) 𝑐 ◡ [⊊] 𝑏 ) |
| 51 | 37 48 50 | syl2anc | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ∈ 𝑏 ) ) → ∃ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) 𝑐 ◡ [⊊] 𝑏 ) |
| 52 | 51 | expr | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ 𝑑 ∈ 𝐴 ) → ( ¬ 𝑑 ∈ 𝑏 → ∃ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) 𝑐 ◡ [⊊] 𝑏 ) ) |
| 53 | 52 | con1d | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ 𝑑 ∈ 𝐴 ) → ( ¬ ∃ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) 𝑐 ◡ [⊊] 𝑏 → 𝑑 ∈ 𝑏 ) ) |
| 54 | 21 53 | biimtrid | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ 𝑑 ∈ 𝐴 ) → ( ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 → 𝑑 ∈ 𝑏 ) ) |
| 55 | 54 | impancom | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ) → ( 𝑑 ∈ 𝐴 → 𝑑 ∈ 𝑏 ) ) |
| 56 | 55 | ssrdv | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ) → 𝐴 ⊆ 𝑏 ) |
| 57 | ssfi | ⊢ ( ( 𝑏 ∈ Fin ∧ 𝐴 ⊆ 𝑏 ) → 𝐴 ∈ Fin ) | |
| 58 | 20 56 57 | syl2an2r | ⊢ ( ( 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∧ ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 ) → 𝐴 ∈ Fin ) |
| 59 | 58 | rexlimiva | ⊢ ( ∃ 𝑏 ∈ ( Fin ∩ 𝒫 𝐴 ) ∀ 𝑐 ∈ ( Fin ∩ 𝒫 𝐴 ) ¬ 𝑐 ◡ [⊊] 𝑏 → 𝐴 ∈ Fin ) |
| 60 | 19 59 | syl6 | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ [⊊] Fr 𝒫 𝐴 → 𝐴 ∈ Fin ) ) |
| 61 | 7 60 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴 ) ) |