This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of Levy58 p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin1-3 | |- ( A e. V -> ( A e. Fin <-> `' [C.] Fr ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | porpss | |- [C.] Po ~P A |
|
| 2 | cnvpo | |- ( [C.] Po ~P A <-> `' [C.] Po ~P A ) |
|
| 3 | 1 2 | mpbi | |- `' [C.] Po ~P A |
| 4 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 5 | 4 | biimpi | |- ( A e. Fin -> ~P A e. Fin ) |
| 6 | frfi | |- ( ( `' [C.] Po ~P A /\ ~P A e. Fin ) -> `' [C.] Fr ~P A ) |
|
| 7 | 3 5 6 | sylancr | |- ( A e. Fin -> `' [C.] Fr ~P A ) |
| 8 | inss2 | |- ( Fin i^i ~P A ) C_ ~P A |
|
| 9 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 10 | ssexg | |- ( ( ( Fin i^i ~P A ) C_ ~P A /\ ~P A e. _V ) -> ( Fin i^i ~P A ) e. _V ) |
|
| 11 | 8 9 10 | sylancr | |- ( A e. V -> ( Fin i^i ~P A ) e. _V ) |
| 12 | 0fi | |- (/) e. Fin |
|
| 13 | 0elpw | |- (/) e. ~P A |
|
| 14 | 12 13 | elini | |- (/) e. ( Fin i^i ~P A ) |
| 15 | 14 | ne0ii | |- ( Fin i^i ~P A ) =/= (/) |
| 16 | fri | |- ( ( ( ( Fin i^i ~P A ) e. _V /\ `' [C.] Fr ~P A ) /\ ( ( Fin i^i ~P A ) C_ ~P A /\ ( Fin i^i ~P A ) =/= (/) ) ) -> E. b e. ( Fin i^i ~P A ) A. c e. ( Fin i^i ~P A ) -. c `' [C.] b ) |
|
| 17 | 8 15 16 | mpanr12 | |- ( ( ( Fin i^i ~P A ) e. _V /\ `' [C.] Fr ~P A ) -> E. b e. ( Fin i^i ~P A ) A. c e. ( Fin i^i ~P A ) -. c `' [C.] b ) |
| 18 | 11 17 | sylan | |- ( ( A e. V /\ `' [C.] Fr ~P A ) -> E. b e. ( Fin i^i ~P A ) A. c e. ( Fin i^i ~P A ) -. c `' [C.] b ) |
| 19 | 18 | ex | |- ( A e. V -> ( `' [C.] Fr ~P A -> E. b e. ( Fin i^i ~P A ) A. c e. ( Fin i^i ~P A ) -. c `' [C.] b ) ) |
| 20 | elinel1 | |- ( b e. ( Fin i^i ~P A ) -> b e. Fin ) |
|
| 21 | ralnex | |- ( A. c e. ( Fin i^i ~P A ) -. c `' [C.] b <-> -. E. c e. ( Fin i^i ~P A ) c `' [C.] b ) |
|
| 22 | 20 | adantr | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> b e. Fin ) |
| 23 | snfi | |- { d } e. Fin |
|
| 24 | unfi | |- ( ( b e. Fin /\ { d } e. Fin ) -> ( b u. { d } ) e. Fin ) |
|
| 25 | 22 23 24 | sylancl | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> ( b u. { d } ) e. Fin ) |
| 26 | elinel2 | |- ( b e. ( Fin i^i ~P A ) -> b e. ~P A ) |
|
| 27 | 26 | elpwid | |- ( b e. ( Fin i^i ~P A ) -> b C_ A ) |
| 28 | 27 | adantr | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> b C_ A ) |
| 29 | snssi | |- ( d e. A -> { d } C_ A ) |
|
| 30 | 29 | ad2antrl | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> { d } C_ A ) |
| 31 | 28 30 | unssd | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> ( b u. { d } ) C_ A ) |
| 32 | vex | |- b e. _V |
|
| 33 | vsnex | |- { d } e. _V |
|
| 34 | 32 33 | unex | |- ( b u. { d } ) e. _V |
| 35 | 34 | elpw | |- ( ( b u. { d } ) e. ~P A <-> ( b u. { d } ) C_ A ) |
| 36 | 31 35 | sylibr | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> ( b u. { d } ) e. ~P A ) |
| 37 | 25 36 | elind | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> ( b u. { d } ) e. ( Fin i^i ~P A ) ) |
| 38 | disjsn | |- ( ( b i^i { d } ) = (/) <-> -. d e. b ) |
|
| 39 | 38 | biimpri | |- ( -. d e. b -> ( b i^i { d } ) = (/) ) |
| 40 | vex | |- d e. _V |
|
| 41 | 40 | snnz | |- { d } =/= (/) |
| 42 | disjpss | |- ( ( ( b i^i { d } ) = (/) /\ { d } =/= (/) ) -> b C. ( b u. { d } ) ) |
|
| 43 | 39 41 42 | sylancl | |- ( -. d e. b -> b C. ( b u. { d } ) ) |
| 44 | 43 | ad2antll | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> b C. ( b u. { d } ) ) |
| 45 | 34 32 | brcnv | |- ( ( b u. { d } ) `' [C.] b <-> b [C.] ( b u. { d } ) ) |
| 46 | 34 | brrpss | |- ( b [C.] ( b u. { d } ) <-> b C. ( b u. { d } ) ) |
| 47 | 45 46 | bitri | |- ( ( b u. { d } ) `' [C.] b <-> b C. ( b u. { d } ) ) |
| 48 | 44 47 | sylibr | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> ( b u. { d } ) `' [C.] b ) |
| 49 | breq1 | |- ( c = ( b u. { d } ) -> ( c `' [C.] b <-> ( b u. { d } ) `' [C.] b ) ) |
|
| 50 | 49 | rspcev | |- ( ( ( b u. { d } ) e. ( Fin i^i ~P A ) /\ ( b u. { d } ) `' [C.] b ) -> E. c e. ( Fin i^i ~P A ) c `' [C.] b ) |
| 51 | 37 48 50 | syl2anc | |- ( ( b e. ( Fin i^i ~P A ) /\ ( d e. A /\ -. d e. b ) ) -> E. c e. ( Fin i^i ~P A ) c `' [C.] b ) |
| 52 | 51 | expr | |- ( ( b e. ( Fin i^i ~P A ) /\ d e. A ) -> ( -. d e. b -> E. c e. ( Fin i^i ~P A ) c `' [C.] b ) ) |
| 53 | 52 | con1d | |- ( ( b e. ( Fin i^i ~P A ) /\ d e. A ) -> ( -. E. c e. ( Fin i^i ~P A ) c `' [C.] b -> d e. b ) ) |
| 54 | 21 53 | biimtrid | |- ( ( b e. ( Fin i^i ~P A ) /\ d e. A ) -> ( A. c e. ( Fin i^i ~P A ) -. c `' [C.] b -> d e. b ) ) |
| 55 | 54 | impancom | |- ( ( b e. ( Fin i^i ~P A ) /\ A. c e. ( Fin i^i ~P A ) -. c `' [C.] b ) -> ( d e. A -> d e. b ) ) |
| 56 | 55 | ssrdv | |- ( ( b e. ( Fin i^i ~P A ) /\ A. c e. ( Fin i^i ~P A ) -. c `' [C.] b ) -> A C_ b ) |
| 57 | ssfi | |- ( ( b e. Fin /\ A C_ b ) -> A e. Fin ) |
|
| 58 | 20 56 57 | syl2an2r | |- ( ( b e. ( Fin i^i ~P A ) /\ A. c e. ( Fin i^i ~P A ) -. c `' [C.] b ) -> A e. Fin ) |
| 59 | 58 | rexlimiva | |- ( E. b e. ( Fin i^i ~P A ) A. c e. ( Fin i^i ~P A ) -. c `' [C.] b -> A e. Fin ) |
| 60 | 19 59 | syl6 | |- ( A e. V -> ( `' [C.] Fr ~P A -> A e. Fin ) ) |
| 61 | 7 60 | impbid2 | |- ( A e. V -> ( A e. Fin <-> `' [C.] Fr ~P A ) ) |