This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjpss | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊊ ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | 1 | biantru | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵 ) ) |
| 3 | ssin | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵 ) ↔ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 5 | sseq2 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ↔ 𝐵 ⊆ ∅ ) ) | |
| 6 | 4 5 | bitrid | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∅ ) ) |
| 7 | ss0 | ⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) | |
| 8 | 6 7 | biimtrdi | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ⊆ 𝐴 → 𝐵 = ∅ ) ) |
| 9 | 8 | necon3ad | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ≠ ∅ → ¬ 𝐵 ⊆ 𝐴 ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → ¬ 𝐵 ⊆ 𝐴 ) |
| 11 | nsspssun | ⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐵 ∪ 𝐴 ) ) | |
| 12 | uncom | ⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) | |
| 13 | 12 | psseq2i | ⊢ ( 𝐴 ⊊ ( 𝐵 ∪ 𝐴 ) ↔ 𝐴 ⊊ ( 𝐴 ∪ 𝐵 ) ) |
| 14 | 11 13 | bitri | ⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∪ 𝐵 ) ) |
| 15 | 10 14 | sylib | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊊ ( 𝐴 ∪ 𝐵 ) ) |