This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | porpss | ⊢ [⊊] Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssirr | ⊢ ¬ 𝑥 ⊊ 𝑥 | |
| 2 | psstr | ⊢ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | brrpss | ⊢ ( 𝑥 [⊊] 𝑥 ↔ 𝑥 ⊊ 𝑥 ) |
| 5 | 4 | notbii | ⊢ ( ¬ 𝑥 [⊊] 𝑥 ↔ ¬ 𝑥 ⊊ 𝑥 ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | 6 | brrpss | ⊢ ( 𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦 ) |
| 8 | vex | ⊢ 𝑧 ∈ V | |
| 9 | 8 | brrpss | ⊢ ( 𝑦 [⊊] 𝑧 ↔ 𝑦 ⊊ 𝑧 ) |
| 10 | 7 9 | anbi12i | ⊢ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) ↔ ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) ) |
| 11 | 8 | brrpss | ⊢ ( 𝑥 [⊊] 𝑧 ↔ 𝑥 ⊊ 𝑧 ) |
| 12 | 10 11 | imbi12i | ⊢ ( ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ↔ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) ) |
| 13 | 5 12 | anbi12i | ⊢ ( ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) ↔ ( ¬ 𝑥 ⊊ 𝑥 ∧ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) ) ) |
| 14 | 1 2 13 | mpbir2an | ⊢ ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) |
| 15 | 14 | rgenw | ⊢ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) |
| 16 | 15 | rgen2w | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) |
| 17 | df-po | ⊢ ( [⊊] Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) ) | |
| 18 | 16 17 | mpbir | ⊢ [⊊] Po 𝐴 |